簡易檢索 / 詳目顯示

研究生: 陳櫻仁
Chen, Ying-Ren
論文名稱: 選擇性沉積銀和金奈米粒子於奈米尺度下石墨烯模板及其表面增強拉曼散射分子感測器
Selective Deposition of Ag and Au Nanoparticles on Nanoscale Graphene Templates for High Sensitivity Surface Enhanced Raman Scattering Based Molecular Sensors
指導教授: 曾永華
Tzeng, Yonhua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 石墨烯表面增強拉曼散射技術選擇性沉積
外文關鍵詞: Graphene quantum dot(GQD), Surface enhanced Raman scattering(SERS), Selective deposition, Molecular sensor
相關次數: 點閱:135下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年石墨烯相關研究快速發展為各種領域注入新活力,其中石墨烯為穩定碳材料具備生物相容性,因此也在生醫方面成為熱門的明日之星。
    其中石墨烯用於表面增強拉曼散射技術被快速發展,然而相關製程昂貴大幅限制其商品應用,因此本文提出了一種新的石墨烯複合金屬電漿子結構基板製作技術,以熱化學氣相沉積法在銅箔上成長高密度石墨烯島群結構,隨後以金屬反應液進行無極電鍍,由於自由能差異會在島群間隙內優先選擇性沉積金屬奈米顆粒,藉由控制並優化石墨烯奈米或量子結構的尺寸、密度和分布,可以自組裝地形成一維、二維奈米金屬顆粒陣列和網目,以石墨烯調控奈米金屬顆粒間距離至適當的位置,在雷射光激發下顆粒間電場相互耦合並增強物理機制,而石墨烯可以藉由螢光淬滅與ππ*吸引待測分子提供增強化學機制,兩機制互輔互成為此基板高表現建立基礎。

    We reported the fabrication of graphene quantum dots (GQDs) on Cu substrates by thermal Chemical Vapor Deposition (CVD). The synthesized high-density graphene quantum dots exhibit strong surface enhanced Raman scattering (SERS) effects. Besides, we also demonstrate an advanced plasmonic sensor by combining GQDs with self-assembled silver (Ag) and gold (Au) nanoparticles (NPs) to enhance SERS signal intensity, which is up to 10^14 times stronger than the normal signal gained from a surface without nanoparticles and GQDs. The preferred nanoscale distance of 3~10nm between neighboring graphene quantum dots-silver nanoparticles hybrid were formed. As this time, the nanostructures were favorable for plasmonic coupling enhanced high local electric fields, which lead to greatly enhanced strength of signal from Raman scattering of probe molecules on the substrate as an effective means of detecting, identifying, and measuring low concentration molecules of scientific and technological significance. These results may pave the way toward a large-scale and low-cost SERS sensors with high performance.

    摘要 I Abstract II 致謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 石墨 1 1.2 石墨烯 1 1.3 研究動機 2 第二章 文獻回顧 4 2.1 石墨烯製備方法與轉移方法 4 2.1.1 機械剝離法(Mechanical exfoliation) 4 2.1.2 氧化還原法(Oxidation and Reduction) 5 2.1.3 化學氣相沉積法(Chemical vapor deposition, CVD) 5 2.1.4 石墨烯轉移至目標基板方法 8 2.2 石墨烯相關檢測與判定方法 13 2.2.1 光學顯微鏡檢測 14 2.2.2 原子力顯微鏡檢測 15 2.2.3 掃描式電子顯微鏡檢測 15 2.2.4 穿隧式電子顯微鏡檢測 16 2.2.5 電性相關檢測 18 2.2.6 拉曼光譜檢測 18 2.3 表面增強拉曼散射相關理論 29 2.3.1 電磁場物理機制 29 2.3.2 化學機制 33 2.3.3 近期石墨烯應用於表面增強拉曼散射基板技術 35 第三章 實驗方法 53 3.1 實驗製程設備 53 3.1.1 熱化學氣相沉積機台(Thermal CVD) 53 3.1.2 化學反應槽設置 58 3.2 分析與量測儀器 59 3.2.1 光學顯微鏡(Optical microscope) 59 3.2.2 掃描式電子顯微鏡(Scanning electron microscopy) 60 3.2.3 原子力顯微鏡(Atomic force microscope) 62 3.2.4 拉曼光譜儀(Raman spectroscopy) 63 第四章 結果與討論 65 4.1 石墨烯成長條件與特殊形圖案製備 65 4.1.1 石墨烯製備與成長 65 4.1.2 雪花狀石墨烯成長與蝕刻探討 68 4.1.3 石墨烯奈米島群與量子點成形機制 72 4.2 石墨烯複合電漿子結構於表面增強拉曼散射基板制備 77 4.3 石墨烯複合電漿子結構量測分析 78 4.3.1 石墨烯量子點/奈米島群結構複合奈米銀金屬顆粒分析 78 4.3.2 浸泡硝酸銀時間對奈米銀顆粒的組織探討 83 4.3.3 石墨烯量子點/奈米島群複合奈米銀顆粒組織形態綜合比較與探討分析 87 4.3.4 石墨烯量子點/奈米島群結構複合奈米金顆粒分析 92 4.3.5 石墨烯結構複合奈米金屬顆粒成分分析 97 第五章 結論 99 第六章 未來方向 100 第七章 參考文獻 101

    1. Katsnelson, M.I., Graphene: carbon in two dimensions. Materials today, 2007. 10(1): p. 20-27.
    2. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    3. Seol, J.H., et al., Two-dimensional phonon transport in supported graphene. Science, 2010. 328(5975): p. 213-216.
    4. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
    5. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
    6. Iyechika, Y., Application of graphene to high-speed transistors: expectations and challenges. Sci. Technol. Trends, 2010. 37: p. 76-92.
    7. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9): p. 538-42.
    8. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
    9. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
    10. Li, X., et al., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc, 2011. 133(9): p. 2816-9.
    11. Li, X., et al., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 2010. 10(11): p. 4328-34.
    12. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
    13. Li, X., et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 2009. 9(12): p. 4359-4363.
    14. de la Rosa, C.J.L., et al., Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 2013. 102(2): p. 022101.
    15. Wang, D.Y., et al., Clean-lifting transfer of large-area residual-free graphene films. Adv Mater, 2013. 25(32): p. 4521-6.
    16. Su, C.Y., et al., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett, 2011. 11(9): p. 3612-6.
    17. Ni, Z., et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano letters, 2007. 7(9): p. 2758-2763.
    18. Paredes, J.I., et al., Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 2009. 25(10): p. 5957-68.
    19. Geng, D., et al., Fractal etching of graphene. J Am Chem Soc, 2013. 135(17): p. 6431-4.
    20. Zhu, H., et al., One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon, 2016. 100: p. 201-207.
    21. Luo, B., et al., Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater, 2014. 26(20): p. 3218-24.
    22. Chiang, C.W., et al., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl Mater Interfaces, 2016. 8(1): p. 466-71.
    23. Maultzsch, J., et al., Phonon dispersion in graphite. Physical review letters, 2004. 92(7): p. 075501.
    24. Dresselhaus, M., A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p. 89-108.
    25. Ferraro, J.R., Introductory raman spectroscopy. 2003: Academic press.
    26. Colthup, N., Introduction to infrared and Raman spectroscopy. 2012: Elsevier.
    27. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2007: Thomson Brooks/Cole.
    28. T. Deschaines et al Thermo Fisher Scientific, Madison, WI, USA.
    29. Kittel, C., Introduction to solid state physics. 2005: Wiley.
    30. https://depts.washington.edu/ntuf/facility/.../NTUF-Raman-Tutorial.pdf.
    31. Malard, L., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5): p. 51-87.
    32. Reich, S. and C. Thomsen, Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2004. 362(1824): p. 2271-2288.
    33. 成大物理系 光電模擬實驗室 http://www.nsl.phys.ncku.edu.tw/index.php?option=module&lang=cht&task=pageinfo&id=29&index=5.
    34. 物理雙月刊(廿八卷二期)2006年4月.
    35. Kottmann, J.P., et al., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64(23): p. 235402.
    36. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
    37. 物理雙月刊 (三十二卷二期) 2010年 7月.
    38. Huang, C.-H., et al., Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Optics express, 2011. 19(12): p. 11441-11450.
    39. Xie, L., et al., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J Am Chem Soc, 2009. 131(29): p. 9890-1.
    40. Liu, C.-Y., et al., Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Optics express, 2011. 19(18): p. 17092-17098.
    41. Zhao, Y., et al., Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Nanoscale, 2014. 6(22): p. 13754-60.
    42. Leem, J., et al., Mechanically Self-Assembled, Three-Dimensional Graphene-Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors. Nano Lett, 2015. 15(11): p. 7684-90.
    43. Xu, W., et al., Surface enhanced Raman spectroscopy on a flat graphene surface. Proc Natl Acad Sci U S A, 2012. 109(24): p. 9281-6.
    44. Hinnemo, M., et al., Scalable residue-free graphene for surface-enhanced Raman scattering. Carbon, 2016. 98: p. 567-571.
    45. Matz, D.L., et al., Signature Vibrational Bands for Defects in CVD Single-Layer Graphene by Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett, 2015. 6(6): p. 964-9.
    46. Yoon, J.-C., et al., A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Adv., 2015. 5(77): p. 62772-62777.
    47. Zhao, Y., et al., Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids. Chem Commun (Camb), 2015. 51(5): p. 866-9.
    48. Li, J.F., et al., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010. 464(7287): p. 392-5.
    49. Xu, S., et al., Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016. 222: p. 1175-1183.
    50. Xu, S., et al., High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles. RSC Adv., 2015. 5(110): p. 90457-90465.
    51. Guo, J., et al., Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity. Applied Surface Science, 2017. 396: p. 1130-1137.
    52. Li, Z., et al., High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si. Sci Rep, 2016. 6: p. 38539.
    53. Zhao, Y., et al., Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Nanoscale, 2017. 9(3): p. 1087-1096.
    54. Huang, S., et al., Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett, 2015. 15(5): p. 2892-901.
    55. Ling, X., et al., Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett, 2014. 14(6): p. 3033-40.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE