簡易檢索 / 詳目顯示

研究生: 楊國明
Yang, Guo-Ming
論文名稱: 藥物釋放之親疏水性乙基纖維素/羥丙基纖維素摻合微粒的製備與其藥物釋放之研究
Drug release behavior and preparation of microspheres composed of hydrophilic/hydrophobic blends of ethylcellulose and hydroxypropylcellulose
指導教授: 吳逸謨
Woo, Eamor M.
郭人鳳
Kuo, Jen-Fung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 159
中文關鍵詞: 控制釋放微粒微粒膠囊兩階段乙基纖維素羥丙基纖維素
外文關鍵詞: microsphere, controlled release, hydroxypropylcellulose, two stages, microcapsule, ethylcellulose
相關次數: 點閱:187下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文是以微粒包覆技術來製備微粒膠囊以求達到藥物控制釋放,本研究採用新式oil/oil懸浮蒸發法成功製得不同基材疏水性乙基纖維素 (EC) 和親水性羥丙基纖維素 (HPC) 適當的微粒膠囊。並且探討水溶解性藥物captopril (CAP) 微粒膠囊及難溶解性藥物isosorbide dinitrate (ISDN) 的不同釋放機制。
      首先是以oil/oil懸浮蒸發法製備EC和HPC為基質的水溶解性藥物CAP微粒膠囊,探討微粒膠曩粒徑及大小分佈的影響便變因,並尋找製備EC/HPC/CAP微膠囊粒徑250-425μm最多產量的操作條件。接著再以X射線及接觸角試驗和紫外線光譜鑑定微膠囊特性。用以研究藥物延遲釋放的微膠囊粒徑250-425μm,並加以探討不同EC/HPC組成的微膠囊釋放模式。以累計溶離試驗測定各時間微粒膠囊的CAP釋放行為,其結果前0.7小時遵守一階釋放動力模式,而釋放時間從2到10小時則是零階釋放動力。其一階釋放及零階釋放動力的速率常數與EC/HPC組成呈線性關係。
      接著再探討難溶性藥物ISDN以oil/oil懸浮蒸發法製備延遲釋放的微膠粒。以EC和HPC作基材製備成含ISDN的微膠粒。四種EC/HPC不同比例(EC的重量組成為 1, 0.833, 0.67 and 0.5)和三種粒徑(100-150, 250-300, and 400-450 μm)作為微粒膠曩基質的ISDN釋放行為探討。EC/HPC組成在接觸角試驗的結果中,以EC/HPC組成3:3為分界,分為兩段的直線分別探討之。首先分析沒有明顯膨潤部份的EC:HPC= 6:0,5:1,4:2,3:3,比較不同顆粒大小及高分子組成的ISDN顆粒作體外試驗( in vitro ) 的累計釋放量關係,粒徑大小對於藥物釋放行為的影響比高分子組成明顯。在高HPC組成和較小粒徑顯示較多藥物殘留量和釋放速度較快。400-450μm粒徑的微粒膠曩顯示較慢的藥物釋放速率和較大的藥物殘留量,所以藥物釋放動力與粒徑大小和高分子組成有關。粒徑在100-150μm時,顯示藥物呈單一階段的擴散控制機制,另一方面,其他250-300μm及400-450μm這兩種粒徑微粒膠曩則顯示兩階段的Higuchi平方根時間帶有遲滯時間的釋放機制。
      探討難溶性藥物ISDN以oil/oil懸浮蒸發法製備延遲釋放的微膠粒系統,以高成份HPC和低成份 EC為速度控制的基材。研究的主要目的是探討高成份的HPC (EC:HPC=2:4,1:5,0:6)的微粒膠囊基材對難溶性藥物ISDN釋放速率的影響及藥物釋放機制。以微粒和薄膜兩種製備方法探討藥物釋放的模式。在以具有明顯膨潤部份的EC:HPC=2:4,1:5,0:6作基材製備成含ISDN的微粒膠曩,其釋放行為是零階模式釋放且沒有明顯的遲滯時間。而模擬組成薄膜則出現兩個階段的釋放模式,前段是零階釋放模式,而後段是Higuchi平方根時間帶有遲滯時間的釋放機制,依照SEM照片及動力模式可探知薄膜的外層積存的藥量較多,故EC/HPC/ISDN薄膜前段可得到零階釋放模式;而內部ISDN分佈則因為有濃度梯度發生,所以後段釋放則以Higuchi平方根時間擴散模式,如此說明依本系統製備的EC/HPC/ISDN微膠囊是還是屬於核-殼型態的擴散模式,只是當高的HPC/ EC比值時,顆粒吸水太快,則藥物釋放的溶蝕速率和基質吸水膨潤剛好達到平衡,形成只有單一階段釋放溶離模式。且微粒膠囊的皮層相對於膜太薄,故很快地整個玻璃狀態部分立刻被水攻擊而成微粒膠囊內部濃度均勻,且遠大於外界濃度,所以微粒膠囊內ISDN的釋放是單一階段零階的機制,而膜呈現較大厚度,水的滲透和基質的膨潤需時較久,所以會有兩段式的釋放模式。

     In this work, the technology of microencapsulation is adopted to prepare the microspheres to obtain the controlled drug release. The study adopts the novel system of oil in oil suspention evaporation method to obtain various matrixes of microspheres successfully by hydrophobic ethylcellulose (EC) and hydrophilic hydroxypropylcellulose (HPC), and to approach various mechanisms from water-soluble drug captopril (CAP) and poorly soluble drug isosorbide dinitrate (ISDN).
     First, the microcapsules were prepared using the oil in oil suspention evaporation method for sustained release of water-soluble drug CAP from microcapsules composed of EC and HPC. Factors affecting the size and size distribution of microcapsules were investigated. The optimum conditions on the maximum products of 250-425μm of EC/HPC/CAP microspheres particle size were fined as well. The 250-425μm microcapsules were characterized using an x-ray diffractometer, static contact angle instrument and UV/visible spectrophotograph. The microcapsules for the sustained release were studied on the various EC/HPC compositions. The cumulative releases of CAP from the microcapsules at various times were measured. The results could be well described by a first order release kinetics for the first 0.7 hours and zero order release kinetics for the release time from 2 to 10 hours. The rate coefficients of first and zero-order stages linearly depended upon the EC/HPC composition.
     Therefore, microcapsules for sustained release of poorly soluble isosorbide dinitrate (ISDN) were prepared based on EC and/or HPC as matrix materials using the oil in oil suspention evaporation method. The release behaviors of microspheres were studied by four EC/HPC compositions (1, 0.833, 0.67 and 0.5 weight fraction EC) and three-mode sizes (100-150, 250-300, and 400-450 μm). The result of the static contact angle of EC/HPC composition was obtained with further respective discussion by dividing the lines of demarcation into two parts as EC/HPC = 3/3. Above all, the part of non-obvious swelling EC: HPC= 6:0, 5:1, 4:2, 3:3 was analyzed. The cumulative amounts of ISDN releasing from the microspheres as functions of mode fractions size and polymer compositions were measured in vitro. It was observed that the microspheres’ size influenced the release behavior of drug more obviously than the polymer composition. The higher hydrophilic HPC content and the smaller size reveal that the faster release rate of drug and the smaller amount of drug residue. The microspheres of 400~450 μm exhibit a slow drug release rate and larger fraction of drug residues. The kinetics of drug release depends on the size and polymer composition. The microspheres with 100-150 μm, of all polymer compositions, present one-stage diffusion kinetic with a lag period for drug release. On the other hand, the microspheres with the other 250-300μm and 400-450μm sizes exhibit two-stage diffusion kinetic with a lag period.
     The novel system of microencapsulation for sustained release of poorly soluble isosorbide dinitrate (ISDN) was prepared by using the oil/oil suspension evaporation method. More content Hydroxypropyl cellulose (HPC) and poorer content ethylcellulose (EC) were used as a rate-controlled matrix. The aim of this study was to investigate the effect of the more content HPC (EC: HPC= 2:4, 1:5, 0:6) of microspheres matrix on the release rate of an incorporated ISDN drug and drug release kinetics. In vitro drug release models, the preparation methods of microspheres and films were measured. The ISDN microspheres of the more content HPC of microspheres matrix present one-stage diffusion kinetic with no clear lag period for drug release. On the other hand, the films with oil/oil suspension evaporation method exhibit two-stage diffusion kinetic for drug release. The former release stage exhibits zero-order dissolution model while the latter release stage exhibits Higuchi square time diffusion model. According to SEM picture and the kinetic model, the outer layer with a large amount of drug is obtained. Therefore, the former mechanism of EC/HPC/ISDN is zero order kinetics. Nevertheless, the gradient concentrations are occurred in the inner part, thus the latter release part is Higuchi square time diffusion model. The microspheres obtained are still surmised to have a core-shell morphology but the skin of the microsphere is a very thin wall allowing high release rates to present one-stage release model. However, when the high ratio EC/HPC matrix of microsphere water uptake too fast, the erosion rate of drug release and matrix water uptake to swell and reach the equilibrium. The outer skin is so thin that the release rate is too fast, so there is only a zero-order release model while the microsphere is too small and the outer layer is too thin. The water immediately uptakes the whole glassy state, so the inner part concentration of microspheres is homogeneous. Because the concentration is larger than the outer part, the ISDN release from the microspheres belongs to zero order mechanism. Also the skin layer of microsphere is comparatively much thinner than the film, so the water immediately attacked the whole glassy state to form the homogeneous inner concentration of the microsphere, which is far larger than the outer concentration. So the ISDN release kinetics of the microsphere is one stage of zero-order kinetics. However, the film presents larger thickness than microsphere that it needs more time for the penetration of water and the swelling of matrix, so the kinetics is two stages controlled release.

    摘要 I Abstract IV 誌謝 IX 目錄 XI 表目錄 XIV 圖目錄 XV 符號說明 XXI 第一章 緒論 1 第二章 原理與文獻回顧 4 2-1控制釋放系統 4 2-2控釋系統之分類 5 2-2-1擴散控制系統 5 2-2-2基質擴散系統 7 2-2-3膨脹控制系統 9 2-2-4溶蝕控制系統 9 2-2-5化學控制系統 10 2-2-6化學固定系統 11 2-2-7滲透壓幫浦 12 2-3控釋系統之應用 13 2-3-1農業之應用 13 2-3-2生物殺蟲劑 14 2-3-3船用塗料 14 2-3-4醫藥之應用 15 2-3-5其他應用 18 2-4控制藥物釋放傳輸 19 2-4-1貯藏室系統 20 2-4-2均質分散式系統 21 2-4-3侵蝕性系統 21 2-5微粒膠囊 25 2-6微粒包覆 26 2-6-1微粒包覆技術 26 2-6-2微粒膠囊的特點 29 2-6-3微粒膠囊化法 31 2-6-3-1物理化學方法 32 2-6-3-2化學方法 33 2-6-3-3.機械方法 34 2-6-4 微膠囊之藥物釋放數學模式 35 第三章 實驗 41 3-1實驗藥品 41 3-2實驗儀器與設備 43 3-3 實驗方法 44 3-3-1EC/HPC/CAP微膠囊的製備 44 3-3-2EC/HPC/ISDN微粒製備 44 3-3-3製備所得微粒膠囊的大小分佈 44 3-3-4藥物溶出量 45 3-3-5溶離試驗 45 3-3-6薄膜的製備 46 3-3-7 顆粒特性測試 47 3-3-8人工胃液的製備 47 3-3-9人工腸液的製備 47 第四章 結果與討論 48 4-1水溶解性藥物captopril (CAP) 在EC/HPC微粒膠囊的釋放機制 50 4-1-1前言 50 4-1-2 結果與討論 52 4-1-3 結論 58 4-2高比率EC/HPC為疏水性基材之isosorbide dinitrate 微膠粒製備與釋放機制之研究 75 4-2-1前言 76 4-2-2結果與討論 77 4-2-2-1顆粒的特徵 77 4-2-2-2 ISDN 製備顆粒的溶離試驗 79 4-2-2-3 藥物釋放動力 80 4-2-3 結論 84 4-3難溶解性藥物isosorbide dinitrate (ISDN) 在EC/HPC親水部 分較多之微膠囊粒的釋放機制 96 4-3-1 前言 96 4-3-2 結果與討論 97 4-3-3 結論 102 第五章 總結 135 參考文獻 138 作者簡介 157 表目錄 Table 2-1 Polymer materials for controlled release 23 Table 4-1 Composition of EC/HPC/CAP microcapsules 58 Table 4-2 Weight fraction of mode fraction sizes and drug concentration of microspheres 85 Table 4-3 Drug residue and diffusion parameters of the drug release from the microspheres obtained as functions of size and polymer composition 86 Table 4-4 Composition of EC/HPC/ISDN microcapsules 104 Table 4-5 Drug residue and diffusion parameters of the drug release from the microspheres and films obtained as functions of the polymer composition. (m) microsphere (f) film 105 Table 4-6 Behaviors of water uptake of EC and/or HPC blends membranes without ISDN 106 Table 4-7 Behaviors of water uptake of EC and/or HPC blends membranes with ISDN 107 圖目錄 Figure 2-1 Cross-section of spheres or cylinder of reservoir devices 6 Figure 2-2 Matrix diffusion system(a)cross-section of matrix diffusion systems (b)various ratio drug dispersed in polymer matrix 8 Figure 2-3 Swelling-controlled systems 9 Figure 2-4 Erosion-controlled systems 10 Figure 2-5 Biodegradable systems 11 Figure 2-6 Chemical bonding systems 12 Figure 2-7 Structure of the osmotic pump systems 13 Figure 2-8 Comparison of the drug concentration after using the various pesticides 14 Figure 2-9 Degradation diffusion mechanism 15 Figure 2-10 Drug level vs. time (a) tradition drug formula (b) controlled release drug formula (c) injection 16 Figure 2-11 Mechanism and model of controlled drug release 20 Figure 2-12 Application of microencapsulation 27 Figure 2-13 Various types of microcapsule 29 Figure 2-14 Effect of drug stability for microcapsules 30 Figure 4-1 Effect of stirring rates on microcapsule size distribution 60 Figure 4-2 Effect of polymer concentration on microcapsule size distribution 61 Figure 4-3 Effect of non-solvent adding rate on microcapsule size distribution 62 Figure 4-4 Effect of drug/polymer ratio on microcapsule size distribution 63 Figure 4-5 Plot of degree of crystallinity and contact angle vs. matrix composition for microcapsules 64 Figure 4-6 In vitro release profiles of CAP microcapsules (A1-A7 in Table 4-1) 65 Figure 4-7 Plot of first-order release shorter than 0.7 hr (A1-A7 in Table 4-1) 66 Figure 4-8 Plot of release drug wt% vs. square root of dissolution time for the release shorter than 0.7 hr (A1-A7 in Table 4-1) 67 Figure 4-9 Relation of K1, tlag, and composition 68 Figure 4-10 Relation of K2, residue drug and composition 69 Figure 4-11 X-ray diffraction of microspheres 70 Figure 4-12 SEM pictures of various composition (A1-A7 in Table 4-1) 74 Figure 4-13 Wide angle x-ray diffraction of (A) isosorbide dinitrate (B) microspheres with various polymer compositions: A1 = E0.5H0.5; A2 = E0.67H0.33; A3 = E0.83H0.17. 87 Figure 4-14 Static contact angles of water on films of EC/HPC polymer blend with various compositions 88 Figure 4-15 SEM illustration for microspheres, (A)E0.83H0.17 and (B)E0.5H0.5 89 Figure 4-16 Dissolution curve of ISDN in water at 37oC and 100 rpm. 90 Figure 4-17 Plots of cumulative release drug wt% vs. time of the microcapsules obtained as functions of size and polymer composition of microspheres. L(i), M(i) & S(i) is indicated in Table 4-3. 91 Figure 4-18 Plots of cumulative release drug wt% vs. the square root of time for ISDN releasing from the small microspheres. S1 E0.5H0.5, S2 E0.67H0.33, S3 E0.83H0.17, S4 EC. 92 Figure 4-19 Plots of cumulative release drug wt% vs. square root of time for ISDN releasing from the medium microspheres. M1 E0.5H0.5, M2 E0.67H0.33, M3 E0.83H0.17, M4 EC. 93 Figure 4-20 Plots of cumulative release drug wt% vs. the square root of time for ISDN releasing from the large microspheres. L1 E0.5H0.5, L2 E0.67H0.33, L3 E0.83H0.17, L4 EC. 94 Figure 4-21 Cumulative release wt% vs. square root of time lines of ISDN released from ethyl cellulose–made microspheres replotted from Fig. 9 of Dinarvand et al. (2000). 95 Figure 4-22 Schematic representation of the solvent dissolution process of a polymer slab 108 Figure 4-23 General schematic profile for the release of a dispersed solute from an erodible polymer matrix 109 Figure 4-24 Schematic drawing of observed swelling boundaries and dimensional changes during drug release in relation to drug solubilities 110 Figure 4-25 Plots of cumulative release ISDN wt% vs. time from the microcapsules with various compositions 111 Figure 4-26 Plots of cumulative release ISDN wt% vs. time from the microcapsules with various films 112 Figure 4-27 Water uptake of HPC film with or without ISDN 113 Figure 4-28 Water uptake of E1H5 film with or without ISDN 114 Figure 4-29 Water uptake of E2H4 film with or without ISDN 115 Figure 4-30 Plots of cumulative release ISDN wt% vs. time for Films obtained shorter than 1 hour 116 Figure 4-31 Plots of cumulative release ISDN wt% vs. square time for films obtained after 2 hour 117 Figure 4-32 SEM picture of surface of E2H4 film 118 Figure 4-33 SEM picture of cross-section of HPC film 119 Figure 4-34 SEM picture of cross-section of E1H5 film 120 Figure 4-35 SEM picture of cross-section of E2H4 film 121 Figure 4-36 Photographs of apparent changes of HPC films with and without ISDN as functions of immersion time of water 125 Figure 4-37 Photographs of apparent changes of E1H5 films with and without ISDN as functions of immersion time of water 129 Figure 4-38 Photographs of apparent changes of E2H4 films with and without ISDN as functions of immersion time of water 133 Figure 4-39 Photographs of apparent changes of E2H4 dry films with and without ISDN 134

    1. Abramowitz R., Joshi Y. M. and Jian N. B., Captopril formulation providing increased duration of activity, US patent 5158777 (1992).
    2. Arai Y., Akers R. J. and Treasure C. R. G., Chemistry of powder production, Chapman & Hall, London (1996).
    3. Baker R., Controlled release of biologically active agents, Wiley, Canada (1987).
    4. Baker R. W. and Loncdale H. K., Controlled release: mechanisms and rates, in controlled release of biologically active agent, Wiley, New York (1974).
    5. Bhardwaj S. B., Shukla A. J. and Colin C. C., Effect of varying drug loading on particle size distribution and drug release kinetics of verpamil hydrochloride microspheres prepared with cellulose esters, J. Microencapsul., 12(1), 71-81 (1995)
    6. Brinker C. J. and Scherer G. W., Sol-gel science, the physics & chemistry of sol-gel processing, Academic Press Inc., Boston (1990).
    7. Bruck S. D., Controlled drug delivery, Vol. I & II, CRC Press, Boca Raton, Florida (1983).
    8. Cardarell H., Controlled release pesticides formulation, CRC Press, Boca Raton, Florida (1976).
    9. Carstensen J. T., Pharmaceutical principles of solid dosage forms, Technomic publisher, Lancaster, PA (1993).
    10. Castro D. T. and Ying J. Y., Synthesis and nitridation of nanocrystalline silicon produced via a tubular forced flow reactor, Mater. Scie. Eng., 204, 65-70 (1995).
    11. Chien Y. W., Novel drug delivery systems, Marcel Dekker, Inc. New York (1992).
    12. Chasseaud L. F., Darragh A., Doyle E., Lambe R. F. and Taylor T., Isosorbide dinitrate plasma concentrations and bioavailability in human subjects after administration of standard oral and sublingual formulations, J. Pharm. Sci., 73, 699-701 (1984).
    13. Conte U., Colombo P., Gazzaniga A., Sangalli M. E. and Manna A. L.; Swelling-activated drug delivery systems, Biomaterials, 9, 489-493 (1988).
    14. Conte U., Maggi L., Colombo P. and Manna A. L., Multi-layered hydrophilic matrices as constant release devices, J. Control. Release, 26, 39-47 (1993).
    15. Crank J. and Park G. S., Diffusion in polymers, Academic Press, London (1968).
    16. Deasy P. B., Microencapsulation and related drug processes, Marcel Dekker, New York (1984).
    17. Deasy P. B., Brophy M. R., Ecanow B. and Joy M. M., Effect of ethylcellulose grade and sealant treatments on the production and in vitro release of microencapsulated sodium salicylate, J. Pharm. Pharmacol., 32, 15-20 (1980).
    18. Derbin G. M., Pallsson B. O., Mansfield J. F., Wheatley T. A. and Dressman J. B., Release behavior from ethylcellulose-coated pellets: Thermomechanical and electron microbeam studies, Pharm. Technol., 20(9), 70-80 (1996).
    19. Dhoot N. O., Microencapsulation for therapeutic application, Ph. D. thesis, Drexel University (2002).
    20. DiMari S., Microencapsulation, microgels, iniferters, Springer, New York (1998).
    21. Dinarvand R. and Zainali B.; Microencapsulation of nifedipine using a solvent-evaporation method, J. Pharm. Pharmcol, 52(suppl.), 9 (2000).
    22. Dinarvand R., Mirfattahi S. and Atyabi F., Preparation, characterization and in vitro drug release of isosorbide dinitrate, J. Microencapsul., 19, 73-81 (2002).
    23. Donbrow M. and Samuelov Y., Zero order drug delivery from double-layered porous films: release rate profiles from ethyl cellulose, hydroxypropyl cellulose and polyethylene glycol mixure, J. Pharm. Pharmcol., 32, 463-470 (1979).
    24. Drost J. D., Reier G. E. and Jain N. B.; Controlled release formulation, US patent 4756911 (1988).
    25. Duchin K. L., McKinstry D. N., Cohen A. I. and Migdalof B. H., Pharmacokinetics of captopril in healthy subjects and in patients with cardiovascular diseases, Clin. Pharmacokinetics, 14, 241-259 (1988).
    26. El-arini S. K., Leuenberger h., Modelling of drug release from polymer matrices: Effect of drug coading, Int. J. Pharm., 121(2), 141-148 (1995).
    27. Fan L. T. and Singh S. K., Controlled release a quantitative treatment, Springer-Verlag, Berlin (1989).
    28. Finch C. A., Polymer for microcapsul walls, Chem. Ind., 18, 752-756 (1985)
    29. Frohoff-Hülsmann M. A., Schmitz A. and Lippold B. C., Aqueous ethyl cellulose dispersions containing plasticizers of different water solubility and hydroxypropyl methylcellulose as coating material for diffusion pellets. I. Drug release rates from coated pellets, Inter. J. Pharm., 177, 69-82 (1999).
    30. Guittard G. V., Carpenter H. A., Quan E. S., Wong P. S. and Hamel L. G., Dosage form for delivering drug in short time period, US patent 5178867 (1993).
    31. Gurny R., Doelker E. and Peppas N. A., Model of sustained release of water-soluble drug from porous, hydrophobic polymers, Biomaterials, 3, 27-32 (1982).
    39. Harland R. S., Gazzaniga A., Sangalli M. E., Colombo P. and Peppas N. A., Drug/polymer matrix swelling and dissolution, Pharm,. Res., 5, 488-494 (1988).
    40. Harris F. W., Proceedings International Controlled Release Pesticide Symposium (1977).
    41. Herbert B. S., Controlled-release delivery system for pesticides, Marcel Dekker, New York (1999).
    42. Higuchi T., Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci., 52, 1145-1149 (1963).
    43. Higuchi W. I. and Hiestand E. N., Dissolution rates of finely divided drug powders I. Effect of a distribution of particle sizes in a diffusion-controlled process, J. Pharm. Sci., 52, 67-71 (1963)
    44. Higuchi W. I., Analysis of data on the medicament release from ointments, J. Pharm. Sci., 51, 802-804 (1963).
    45. Hopfenberg H. B. and Hsu K. C., Swelling-controlled constant rate delivery systems, Polym. Eng. Sci., 18(15), 1186-1891 (1978).
    46. Hsieh D. S. T., Rhine W. D. and Langer R., Zero-order controlled-release polymer matrices for micro- and macromolecules, J. Pharm. Sci., 72, 17-22 (1983).
    47. Hsieh D. S. T., Controlled Release System:Fabrication technology, Vol. I & II, CRC Press, Boca Raton, Florida (1988).
    48. Huber H. E., Dale L. B. and Christenson G. L., Utilization of hydrophilic gums for the control of drug release from tablet formulations. I. Disintegration and dissolution behavior, J. Pharm. Sci. 55, 974-976 (1966).
    49. Ikeda T., Komai T., Kawai K. and Shindo H., Urinary metabolites of 1(-3-mercapto-2-D-methyl-1-oxopropyl)-L- proline (SQ-14225), a new antihypertensive agent, in rats and dogs, Chem. Pharm. Bull., 29, 1416-1422 (1981).
    50. Jarrott B., Anderson A. I. E., Hooper R. and Louis W. J., High performance liquid chromatographic analyses of captopril in plasma, J. Pharm. Sci., 70, pp. 665-667 (1981).
    51. Jarrott B., Drummer O., Hooper R., Anderson A. I. E., Miach P. J. and Louis W. J., Pharmacokinetic properties of captopril after acute and chronic administration to hypertensive subject, Am. J. Cardiol., 49, pp.1547-1555 (1982).
    52. Johnson P. and Lloyd-Jones J. G., Drug delivery systems: fundamentals and techniques, VHC publisher (1987).
    53. Jr., Raia J. J., Barone J. A., Byerly W. G. and Lacy C. R., Angiotensin converting enzyme inhibitors:a comparative review, DICP Ann. Pharmacother., 24, 506-525 (1990).
    54. Kadin H., Captorpil, Anal. profiles drug substances, 2, 79-137 (1982).
    55. Kaeser-Liard B., Kissel T. and Sucker H., Manufacture of controlled release formulations by a new microencapsulation process, the emulsion-induction technique, Acta Pharm. Technol. 30, 294-301 (1984).
    56. Karkis J. E., Corlin R., Mills R. M., Williams R. A., Schwitzer P. and Ransil B. J., Sustained effects of orally administered isosorbide dinitrate on exercise performance of patients with angina pectoris, Am. J. Cardio., 43, 265-271. (1979).
    57. Kawashima Y., Niwa T., Handa T., Takeuchi H., Iwamoto T. and Itoh Y., Preparation of prolonged-release spherical micro-matrix of ibuprofen with acrylic polymer by the emulsion-solvent diffusion method for improving bioavailability, Chem. Pharm. Bull., 37, 425 (1989).
    58. Khids S. H., Niazy E. M. and El-Sayed Y. M., Preparation and in-vitro evaluation of metoclopramide hydrochloride microspheres, J. Microencapsul., 12, 651-660 (1995).
    59. Khids S. H., Niazy E. M. and El-Sayed Y. M., Development and in-vitro evaluation of sustained-release meclofenamic acid microspheres, J. Microencapsul., 15, 153-162 (1998).
    60. Kim C. J., Compressed donut-sharped tables with zero-order release kinetics, Pharm. Res., 12, 1045 (1995).
    61. Korsmeyer R. W. and Peppas N. A., Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs, J. Membr. Sci., 9, 211-227 (1981).
    62. Korsmeyer R. W., Gurny R., Doelker E., Buri P. and Peppas N. A., Mechanisms of solute release from porous hudrophilic polymer, Int. J. Pharm., 15, 25-35 (1983).
    63. Kuu W. Y. and Yalkowsky S. H., Multiple-hole approach to zero-order release, J. Pharm. Sci., 74, 926-933 (1985).
    64. Lachman L., Lieberman H. A. and Kanig J. L., The theory and practice of industrial pharmacy, Lea & Febiger, Philadelphia (1970).
    65. Langer R. S. and Peppas N. A., Present and future applications of biomaterials in controlled drug delivery systems, Biomaterials, 2, 201-214 (1981).
    66. Langer R. S. and Wise D. L., Medical applications of controlled release, Vol. I & II, CRC Press, Boca Raton, Florida (1984).
    67. Lapidus H. and Lordi N. G., Some factors affecting the release of a water-soluble drug from a compressed hydrophilic matrix, J. Pharm. Sci., 55, 840-843 (1966).
    68. Lapidus H. and Lordi N. G., Drug release from compressed hydrophilic matrices, J. Pharm. Sci., 57, 1292-1301 (1968).
    69. Laufen H., Aumann M. and Leiold M., Oral adsorption and disposition of isosorbide dinitrate and isosorbide mononitrate in man, Drug Res., 33, 980-984 (1983).
    70. Lee P. I., Diffusional release of a solute from a polymeric matrix-approximate analytical solutions, J. Membrane Sci., 7, 255-275 (1980).
    71. Lee P. I., Novel approach to zero-order drug delivery via immobilizeed nonuniform drug disttribution in glass hydrogels, J. Pharm. Sci., 73(10), 1344-1347 (1984).
    72. Lee P. I., Effect of non-uniform initial drug concentration distribution on the kinetics of drug release from glassy hydrogel matrices, Polymer, 25, 973-978 (1984).
    73. Lee P. I., Kinetics of drug release from hydrogel matrices, J. Control. Release, 2, 277-288 (1985).
    74. Lee P. I. and Peppas N. A., Prediction pof polymer dissolution in swellable controlled-release system, J. Control. Release, 6, 207-215 (1987).
    75. Lee P. I., Controlled-release: pharmaceutical applications, American Chemicak Society, Washington, DC (1987).
    76. Lee P. I. and Kim C. J., Probing the mechanisms of drug release from hydrogels, J. Control. Release, 16, 229-236 (1991).
    77. Lee P. I. and Lum S. K., Swelling-induced zero-order release from rubbery polydimethylsiloxane beads, J. Control. Release, 18, 19-24 (1992).
    78. Lee P. I., Swelling and dissolution kinetics during peptide release from erodible anionic gel beads, Pharm. Res., 10(7), 980-985 (1993).
    79. Leon S. and Andrew B. C., Applied biopharmaceutics and pharmacokinetics, Prentice-Hall International Inc. 3rd (1993).
    80. Levy M., Koren G., Klein J., McLorie G. and Balfe J. W., Captopril pharmacokinetics, blood pressure response and plasma renin activity in normotensive children with renal scarring, Dev. Pharmacol. Ther., 4, 185-193 (1991).
    81. Luzzi L. A., Zoglio M. A. and Maulding H. V., Preparation and evalution of the prolonged release properties of nylon microcapsules, J. Pharm. Sci., 59, 338-341 (1970).
    82. Luzzi L. A., Microencapsulstion, J. Pharm. Sci., 59, 1367-1376 (1970).
    83. Madan P. L., Clofibrate microcapsules II: effect of wall thickness on release characteristics, J. Pharm. Sci., 70, 430-432 (1981).
    84. Mallapragada S. K. and Peppas N. A., Crystal dissolution-controlled release systems: I. Physical characteristics and moldeling analysis, J. control. Release, 45, 87-94 (1997).
    85. McEvoy G. K., AHFS Drug information 97, American Society of Healthy-system Pharmacists (1997).
    86. Mikos A. G., Polymers in Medicine and Pharmacy, MRS (1993).
    87. Mikos A. G., Leong K. W., Yaszemski M. J., Tamada J. A. and Radomsky M. L., Polymer in medicine and pharmacy, MRS (1995).
    88. Moldenhauer M. G. and Nairn J. G., Formulation parameters affecting the preparation and properties of microencapsulated ion-exchange resins containing theophylline, J. Pharm. Sci., 79, 659-666 (1990).
    89. Nixon I. R. and Walker S. E., The in vitro evaluation of gelatin coacervate microcapsules, J. Pharm. Pharmacol., 23, 147-156 (1971).
    90. Nozaki Y., Ohta M. and Chien Y. W., Transmucosal controlled systemic delivery of isosorbide dinitrate: in vivo/in vitro correlation, J. Control. Release, 43, 105-114 (1977).
    91. Nozaki Y., Yukimatsu Y. and Mayumi T., A new transmucosal controlled systemic delivery of isosorbide dinitrate in vivo and in vitro evaluation in beagle dogs, S. T. P. Pharma Science, 6, 134-141 (1996).
    92. Nur A. O. and Zhang J. S., Recent progress in Sustained/controlled oral delivery of captopril: an overview, Int. J. Pharm., 194, 139-146 (2000).
    93. Oh J. E., Nam Y. S., Lee K. H. and Park T. G., Conjugation of drug to poly (d, l-lactic-co-glycolic acid) for controlled release from biodegradable microspheres, J. Control. Release, 57, 269-280 (1999).
    94. Okochi H. and Nakano M., Preparation and evaluation of w/o/w type emulsions coataining vancomycin, Adv. Drug Deliver. Rev., 45, 5-26 (2000).
    95. Peppas N. A., Gurny R., Doelker E., and Buri P., Modelling of drug diffusion through swellable polymeric system, J. Membrane Sci., 7, 241-2535 (1980).
    96. Peppas N. A. and Franson N. M., The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, J. Polym. Sci. Polym. Phy., 21, 983-997 (1983).
    97. Platzer R., Reutemann G. and Galeazzi R. L., Pharmacokinetics of intraveneous isosorbide dinitrate, J. Pharma. Biopharm., 10, 575-586 (1982).
    98. Qiu Y., Chidambaram N. and Flood K., Design and evaluation of layered duffusional matrices for zero order sustained-release, J. Control. Release, 51, 123-130 (1998).
    99. Rodolph F. B., Diffusion in a multicomponent inhomogeneous system with moving boundaries. I. Swelling at constant volume, J. Polym. Sci. Polym. Phy., 17, 1709-1718 (1979).
    100. Rodolph F. B., Diffusion in a multicomponent inhomogeneous system with moving boundaries. II. Increasing or decreasing volume (swelling or drying), J. Polym. Sci. Polym. Phy., 18, 2323-2336 (1980).
    101. Rogers C. E., Physics and chemistry of the organic solid States, Interscience Publishers, New York (1965).
    102. Rosoff M., Controlled release of drugs:polymers and aggregate systems, VCH Publishers, USA (1989).
    103. Roseman T. J. and Mansdorf S. Z., Controlled release delivery systems, Marcel Dekker, New York (1983).
    104. Sakr F. M., A programmable drug delivery system for oral administration, Inter. J. Pharm., 184, 131-139 (1999).
    105. Sclar D. A., Skaer T. L., Chin A., Okamoto M. P. and Gill M. A., Utility of a trandermal delivery system for antihypertensive therapy. Part 1, Am. J. Med., 91, 50-56 (1991).
    106. Scott D. C. and Hollenbeck G., Design and manufacture of a zero-order sustained-release pellet dosage form through nonuniform drug distribution in a diffusional matrix, Pharm. Res., 8, 156-161 (1991).
    107. Shaw J. E., Development of transdermal therpeutical systems, Drug Dev. Ind. Pharm., 9, 579-603 (1983).
    108. Simon B., Microencapsulation: methods and industrial applications, Marcel Dekker, New York (1996).
    109. Singhvi S. M., Peterson A. E., Jr., Ross J. J., Shaw J. M., Keim G. R. and Migdalof B. H., Pharmacokinetics of captopril in dogs and monkeys, J. Pharm. Sci., 70, 1108-1112 (1981).
    110. Sithit S., Chen W. and Price J. C., Development and characterization of buoyant theophylline microspheres with near zero order release kinetics, J. Microencapsul., 15, 725-734 (1998).
    111. Speiser P., Microencapsulation: New Techniques and Application, Technology Books (1979).
    112. Strachl P., Pharm D. and Galeazzi R. L., Isosorbide dinitrate bioavailability, kinetics, and metabolism, Clin. Pharmacol. Ther., 38, 140-149 (1985).
    113. Thakur A. B. and Jain N. B., Controlled release formulation and method, US patent 4738850 (1988).
    114. Thanoo B. C., Sunny M. C. and Jayakrishnan A., Oral sustained-release drug delivery systems using polycarbonate microspheres capable of flating on the gastric fluid, J. Pharm. Phamaco., 45, 21-24 (1993).
    115. Varelas C. G., Dixon D. G. and Steiner C. A., Zero-order release from biphasic polymer hydrogels, J. Control. Release, 34, 185-192 (1995).
    116. Vyas S. P. and Jain C., Bioadlhesive polymer grafted starch microspheres bearing isosorbide dinitrate for buccal administration, J. Microencapsul., 9, 457-476 (1992).
    117. Wada R., Hyon S. H. and Ikada Y., Kinetics of diffusion-controlled drug release enhanced by matrix degradation, J. Control. Release, 37, 151-160 (1995).
    118. Washington C., Stability of liquid emulsion for drug delivery, Adv. Drug Deliver. Rev., 20, 131-145 (1996)
    119. Whateley T. L., Microencapsulation of drugs, Harwood Academic Publisher, Philadelphia (1992).
    120. Windholz M., Budavari S., Blumetti R. F. and Otterbein E. S., The merck index. 10th ed., Merck & CO., Inc. U.S.A., 244 (1983).
    121. Wong K. K., Lan S. J. and Migdalof B. H., In vitro biotransformations of [14C] captopril in the blood of rats, dogs and humans, Biochem. Pharmacol., 30, 2643-2650 (1981).
    122. Woolfson A. D., Elliott G. R. E., Gilligan C. A. and Passmore C. M., Design of an intravaginal ring for the controlled delivery of 17β-estradiol as its 3-acetate ester, J. Control. Release, 61, 319-328 (1999).
    123. Yaszemski M. J., Tissue engineering and novel delivery systems, Marcel Dekker, New York (2004).
    124. Zhou X. H. and Li W. P. A., Stability and in vitro absorption of captopril, enalapril and lisinopril across the rat intestine, Biochem. Pharmacol., 47, 1121-1126 (1994).
    125. Zoglio M. A. and Carstensen J. T., A simple, theoretical approch to zero-order controlled drug release from compressed tablets, Inter. J. Pharm. Prod. Mfr., 5,1-15 (1984).

    下載圖示 校內:立即公開
    校外:2006-05-01公開
    QR CODE