簡易檢索 / 詳目顯示

研究生: 吳泓璁
Wu, Hung-Tsung
論文名稱: 胰島素阻抗形成之可能機轉:以PPARs為主
The Possible Mechanisms for the Development of Insulin Resistance-Role of PPARs
指導教授: 鄭瑞棠
Cheng, Juei-Tang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 75
中文關鍵詞: 棉球肉芽腫糖尿病脂肪肝胰島素阻抗油酸
外文關鍵詞: Cotton pellet granuloma, Diabetes, Hepatic steatosis, Insulin resistance, Oleic acid
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胰島素抗阻(insulin resistance)是形成第二型糖尿病的主要原因。過去文獻指出,肥胖(obesity)會導致增大的脂肪組織釋放出發炎激素,而使生物體處於一個慢性發炎的狀態,進一步促使胰島素抗阻的發生。然而,胰島素抗阻是否可以在沒有肥胖的狀況下產生,仍然不清楚。因此我們利用一個在脂肪組織,以棉球引發的肉芽腫(cotton pellet granuloma; CPG)非肥胖型發炎動物模式,來評估胰島素抗阻的產生。我們發現在附睪附近的白色脂肪(epididymal white adipose tissue)而非肩頰骨間的棕色脂肪 (interscapular brown adipose tissue),植入棉球後,會降低胰島素敏感性及葡萄糖利用率,而在骨骼肌和肝臟的磷酸化胰島素受體(phosphoinsulin receptor)及Akt也會減低。在脂肪組織中的巨噬細胞(macrophage)浸潤情形、血液中白血球數量、單核球化學引誘蛋白 (monocyte chemoattractant protein)-1以及介白素(interleukin-6)的量,在棉球植入後的小鼠體內都有明顯的增加。然而,我們發現在附睪白色脂肪植入棉球的小鼠,其血中的脂聯素(adiponectin)含量是比較低的,而此一現象可能是因為在白色脂肪中,加瑪型脂小體增生活化受體(peroxisome proliferator-activated receptor-gamma;PPARgamma表現量降低的緣故。此外我們也發現非類固醇性消炎劑indomethacin能夠藉由增加PPARgamma的表現而降低血液中一氧化氮產物(nitrate/nitrite)和前列腺素E2prostaglandin)的含量,進一步改善胰島素抗阻。因此,肥胖並非是造成胰島素抗阻產生的必要條件,而在白色脂肪的發炎現象,對於胰島素抗阻的發生,扮演了一個重要的角色。此外,消炎藥物也許可以做為一個治療糖尿病的選擇。
    除了肥胖之外,雖然過去普遍認為脂肪肝(hepatic steatosis) 與胰島素抗阻的形成也是息息相關的,然而兩者的關聯性仍然存在著矛盾關係。 本研究利用人類肝臟腫瘤細胞Hep G2 投予油酸(oleic acid)處理後,發現細胞內的中性脂肪酸有明顯堆積增加的現象,卻沒有觀察到胰島素抗阻的產生。此外,我們發現油酸可以藉由一個鈣離子依賴的路徑,增加peroxisome proliferator-activated receptor-delta;PPARdelta的表現,而PPARdelta可以藉由抑制PTEN的表現,增加胰島素的敏感性。進一步在Hep G2細胞中將PPARdelta剔除後,可以發現在油酸的處理下,細胞內中性脂肪酸的堆積有顯著增加的現象,同時也可以觀察到胰島素抗阻的發生。此外,投予PPARdelta致效劑於由高脂飲食所引致之第二型糖尿病鼠,不但可以顯著地改善脂肪肝,同時也可以改善胰島素抗阻。綜合以上,我們發現脂肪肝的產生不ㄧ定會造成胰島素抗阻,而PPARdelta對於脂肪肝所造成的胰島素抗阻扮演一個關鍵角色。
    總結以上,我們發現活化PPAR家族不只能抑制發炎反應,同時亦能增加胰島素敏感度。因此,開發PPAR致效劑是一個治療糖尿病的重要策略。

    Insulin resistance is the major risk for the development of type 2 diabetes. Obesity leads larger adipocytes secrete proinflammatory cytokines that cause chronic inflammation in animals. This, in turn, leads to the development of insulin resistance (IR). However, the development of IR without obesity is still obscure. We aimed to use a non-obese animal model with inflammation by cotton pellet granuloma transplantation (CPG) in adipose tissue to characterize IR development. We found that CPG in epididymal white adipose tissue (WAT), rather than in interscapular brown adipose tissue, impaired insulin sensitivity, and glucose utilization, and that it decreased levels of phospho-insulin receptor and phospho-Akt in both muscle and liver tissue. Macrophage infiltration in adipose tissue, leukocyte counts, monocyte chemoattractant protein-1, and interleukin-6 were elevated in CPG-treated mice. However, we found a marked decrease of plasma adiponectin only in the WAT group, which might have been because of the decreased level of peroxisome proliferator-activated receptor-gamma(PPARgamma)in WAT. In addition, we also found that indomethacin, a non-steroidal anti-inflammatory drug, might elevate the expression of PPARgamma to decrease serum nitrate/nitrite andprostaglandin E2 levels. These effects further led to the improvement of IR. Therefore, obesity itself is not an essential factor for IR and inflammation plays a crucial role in the development of IR. In addition, anti-inflammatory drugs might be applied as candidates for diabetes therapy.
    It was widely believed that the development of IR is associated with hepatic steatosis. This concept is however subject to controversy, with recent studies indicating that fatty liver is not always associated with IR and that IR is not a critical factor in the development of hepatic steatosis. In this study, oleic acid induced steatosis in HepG2 cells with normal insulin sensitivity in consistent with the previous study. Moreover, oleic acid increased the expression of PPARdelta through a calcium-dependent pathway, and the increase of PPARdelta expression further decreased the expression of phosphatase and tensin homolog (PTEN) to increase insulin sensitivity. Knockdown of peroxisome proliferator-activated receptor-delta (PPARdelta) not only augmented the development of lipid accumulation in HepG2 cells but also impaired insulin sensitivity. In addition, administration of PPARdelta agonistinhigh fat diet-induced diabetic mice significantly improved hepatic steatosis and IR. Taken together, we found that hepatic steatosis might not be an essential factor for the development of IR. In contract, PPARdelta plays a critical role in the development of IR in hepatic steatosis status.
    In conclusion, we found that activation of PPAR family not only inhibited the inflammatory effects, but also increased insulin sensitivity. Therefore, investigation of PPAR agonists might be an important strategy for diabetes therapy.

    Contents Abstract................................................ 2 Chinese Abstract.........................................4 Acknowledgements........................................ 6 Content..................................................7 Table content...........................................10 Figure content..........................................11 Abbreviations...........................................13 Chapter 1 Introuction...................................15 1.1 Obesity and insulin resistance......................15 1.2 Hepatic steatosis and insulin resistance............16 Chapter 2 Materials and Methods.........................19 2.1 Animals.............................................19 2.2 Cotton pellet granuloma model (CPG).................19 2.3 Insulin tolerance test..............................19 2.4 Intraperitoneal glucose tolerance test..............20 2.5 Western blot analysis...............................20 2.6 Flow cytometry......................................21 2.7 Analyzing parameters in serum.......................22 2.8 Induce of steatosis.................................22 2.9 Determination of Ca2+ concentration.................22 2.10 Small interfering ribonucleic acid transfection....23 2.11 Statistical analysis...............................23 Chapter 3 Results.......................................24 3.1 Cotton pellet implantation-induced CPG formation without obesity.........................................24 3.2 Changes of plasma leukocyte counts and proinflammatory cytokines in CPG-treated mice...........................24 3.3 Mice decreased their Responses to tolbutamide after implanting cotton pellets in WAT group..................24 3.4 Implanting cotton pellets in WAT group mice induced insulin resistance and glucose intolerance..............24 3.5 Implanting cotton pellets in WAT group mice decreased phosphorylation of insulin receptor and Akt proteins in skeletal muscle and liver...............................25 3.6 Implanting cotton pellets in WAT and BAT group mice increased macrophage infiltration in adipose tissue.....25 3.7 Implanting cotton pellets in WAT group mice induced macrophage and neutrophil infiltration, elevated angiogenesis, and decreased PPARgamma expression........26 3.8 Indomethacin decreased cotton pellet implantation-induced white blood cell increment and immune cell infiltration into the epididymal white adipose tissue...26 3.9 Indomethacin improved cotton pellet implantation-induced insulin resistance..............................26 3.10 Indomethacin decreased cotton pellet implantation-induced COX-2 expression in epididymal white adipose tissue and PGE2 levels in serum................................27 3.11 Indomethacin decreased cotton pellet implantation-induced iNOS expression in epididymal white adipose tissue and nitrite/nitrate levels in serum.....................27 3.12 Indomethacin improved cotton pellet implantation-induced PPARgamma decrement in epididymal white adipose tissue..................................................28 3.13 OA increased PPARdelta expression in HepG2 cells...28 3.14 OA increased PPARdelta expression though GPR40-mediated and calcium-dependent pathway..................28 3.15 Deletion of PPARdelta-augmented steatosis in HepG2 cells...................................................29 3.16 Deletion of PPARdelta induced IR though a PTEN-dependent mechanism.....................................29 3.17 Administration of PPARdelta agonist ameliorated HFD-induced IR and hepatic steatosis........................30 Chapter 4 Discussion....................................31 4.1 Depot-dependent variability in WAT and BAT......31 4.2 Indomethacin activates PPARgamma to increase insulin sensitivity.....................................34 4.3 Role of PPARdelta in the regulation of insulin resistance in hepatic steatosis.........................35 References..............................................39 Tables..................................................51 Figures.................................................53 Publications............................................72

    [1] Pi-Sunyer X. The medical risks of obesity. Postgrad Med 2009;121:21-33.
    [2] Bays HE, Gonzalez-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 2008;6:343-68.
    [3] Nieves DJ, Cnop M, Retzlaff B, Walden CE, Brunzell JD, Knopp RH, et al. The atherogenic lipoprotein profile associated with obesity and insulin resistance is largely attributable to intra-abdominal fat. Diabetes 2003;52:172-9.
    [4] Chen H. Cellular inflammatory responses: novel insights for obesity and insulin resistance. Pharmacol Res 2006;53:469-77.
    [5] Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-808.
    [6] Meyers MR, Gokce N. Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes 2007;14:365-9.
    [7] Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia 2003;46:1594-603.
    [8] Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia 2005;48:1038-50.
    [9] Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116:1793-801.
    [10] Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281:26602-14.
    [11] Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 2005;54 Suppl 2:S114-24.
    [12] Gonzalez-Gay MA, Gonzalez-Juanatey C, Martin J. Rheumatoid arthritis: a disease associated with accelerated atherogenesis. Semin Arthritis Rheum 2005;35:8-17.
    [13] Morley JE, Thomas DR, Wilson MM. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 2006;83:735-43.
    [14] Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994;8:1224-34.
    [15] Sears IB, MacGinnitie MA, Kovacs LG, Graves RA. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 1996;16:3410-9.
    [16] Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 2004;25:331-6.
    [17] Ye JM, Dzamko N, Cleasby ME, Hegarty BD, Furler SM, Cooney GJ, et al. Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia 2004;47:1306-13.
    [18] Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 2002;51:1022-7.
    [19] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008;20:86-100.
    [20] Rao CV, Verma AR, Gupta PK, Vijayakumar M. Anti-inflammatory and anti-nociceptive activities of Fumaria indica whole plant extract in experimental animals. Acta Pharm 2007;57:491-8.
    [21] Gupta M, Mazumder UK, Kumar RS, Gomathi P, Rajeshwar Y, Kakoti BB, et al. Anti-inflammatory, analgesic and antipyretic effects of methanol extract from Bauhinia racemosa stem bark in animal models. J Ethnopharmacol 2005;98:267-73.
    [22] Guidorizzi de Siqueira AC, Cotrim HP, Rocha R, Carvalho FM, de Freitas LA, Barreto D, et al. Non-alcoholic fatty liver disease and insulin resistance: importance of risk factors and histological spectrum. Eur J Gastroenterol Hepatol 2005;17:837-41.
    [23] Lonardo A, Lombardini S, Scaglioni F, Carulli L, Ricchi M, Ganazzi D, et al. Hepatic steatosis and insulin resistance: does etiology make a difference? J Hepatol 2006;44:190-6.
    [24] Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006;116:2464-72.
    [25] Contos MJ, Choudhury J, Mills AS, Sanyal AJ. The histologic spectrum of nonalcoholic fatty liver disease. Clin Liver Dis 2004;8:481-500, vii.
    [26] Adams LA, Angulo P. Recent concepts in non-alcoholic fatty liver disease. Diabet Med 2005;22:1129-33.
    [27] Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 2005;42:987-1000.
    [28] Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999;107:450-5.
    [29] Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004;279:32345-53.
    [30] Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001;120:1183-92.
    [31] Falchuk KR, Fiske SC, Haggitt RC, Federman M, Trey C. Pericentral hepatic fibrosis and intracellular hyalin in diabetes mellitus. Gastroenterology 1980;78:535-41.
    [32] Stone BG, Van Thiel DH. Diabetes mellitus and the liver. Semin Liver Dis 1985;5:8-28.
    [33] James OF, Day CP. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. J Hepatol 1998;29:495-501.
    [34] Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 1990;12:1106-10.
    [35] Bacon BR, Farahvash MJ, Janney CG, Neuschwander-Tetri BA. Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology 1994;107:1103-9.
    [36] Rinella ME, Green RM. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 2004;40:47-51.
    [37] Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 5:145-71.
    [38] Nolan CJ, Larter CZ. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol 2009;24:703-6.
    [39] Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol 2009;24:830-40.
    [40] Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003;113:159-70.
    [41] Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 2004;10:1245-50.
    [42] Suh HN, Huong HT, Song CH, Lee JH, Han HJ. Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes. Am J Physiol Cell Physiol 2008;295:C1518-27.
    [43] Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, et al. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 2004;106:635-43.
    [44] Wang SR, Pessah M, Infante J, Catala D, Salvat C, Infante R. Lipid and lipoprotein metabolism in Hep G2 cells. Biochim Biophys Acta 1988;961:351-63.
    [45] Okamoto Y, Tanaka S, Haga Y. Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model. Hepatol Res 2002;23:138-44.
    [46] Janorkar AV, King KR, Megeed Z, Yarmush ML. Development of an in vitro cell culture model of hepatic steatosis using hepatocyte-derived reporter cells. Biotechnol Bioeng 2009;102:1466-74.
    [47] Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res 2010;2:95-104.
    [48] Edvardsson U, Ljungberg A, Oscarsson J. Insulin and oleic acid increase PPARgamma2 expression in cultured mouse hepatocytes. Biochem Biophys Res Commun 2006;340:111-7.
    [49] Pang M, de la Monte SM, Longato L, Tong M, He J, Chaudhry R, et al. PPARdelta agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair. J Hepatol 2009;50:1192-201.
    [50] Chen ZC, Yu BC, Chen LJ, Cheng KC, Lin HJ, Cheng JT. Characterization of the mechanisms of the increase in PPARdelta expression induced by digoxin in the heart using the H9c2 cell line. Br J Pharmacol. 2011;163:390-8.
    [51] Hsu JH, Liou SS, Yu BC, Cheng JT, Wu YC. Activation of alpha1A-adrenoceptor by andrographolide to increase glucose uptake in cultured myoblast C2C12 cells. Planta Med 2004;70:1230-3.
    [52] Ozaki Y, Sakaguchi I, Tujimura M, Ikeda N, Nakayama M, Kato Y, et al. Study of the accelerating effect of shikonin and alkannin on the proliferation of granulation tissue in rats. Biol Pharm Bull 1998;21:366-70.
    [53] Bird J, Lay JC, Lee HJ. The effects of new local anti-inflammatory steroids on leucocyte migration and prostanoid liberation in rats. J Pharm Pharmacol 1986;38:589-94.
    [54] Kapu SD, Ngwai YB, Kayode O, Akah PA, Wambebe C, Gamaniel K. Anti-inflammatory, analgesic and anti-lymphocytic activities of the aqueous extract of Crinum giganteum. J Ethnopharmacol 2001;78:7-13.
    [55] Hatanaka E, Monteagudo PT, Marrocos MS, Campa A. Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin Exp Immunol 2006;146:443-7.
    [56] Plomgaard P, Nielsen AR, Fischer CP, Mortensen OH, Broholm C, Penkowa M, et al. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes. Diabetologia 2007;50:2562-71.
    [57] Krol E, Agueel R, Banue S, Smogorzewski M, Kumar D, Massry SG. Amlodipine reverses the elevation in [Ca2+]i and the impairment of phagocytosis in PMNLs of NIDDM patients. Kidney Int 2003;64:2188-95.
    [58] Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 2000;102:185-90.
    [59] Katz S, Klein B, Elian I, Fishman P, Djaldetti M. Phagocytotic activity of monocytes from diabetic patients. Diabetes Care 1983;6:479-82.
    [60] Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005;436:356-62.
    [61] Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature 2001;409:307-12.
    [62] Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, Zraika S, et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 2005;48:2330-3.
    [63] Gomez-Ambrosi J, Rodriguez A, Catalan V, Ramirez B, Silva C, Rotellar F, et al. Serum retinol-binding protein 4 is not increased in obesity or obesity-associated type 2 diabetes mellitus, but is reduced after relevant reductions in body fat following gastric bypass. Clin Endocrinol (Oxf) 2008;69:208-15.
    [64] Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell 2007;131:242-56.
    [65] Klaus S, Keijer J. Gene expression profiling of adipose tissue: individual, depot-dependent, and sex-dependent variabilities. Nutrition 2004;20:115-20.
    [66] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277-359.
    [67] Villena JA, Cousin B, Penicaud L, Casteilla L. Adipose tissues display differential phagocytic and microbicidal activities depending on their localization. Int J Obes Relat Metab Disord 2001;25:1275-80.
    [68] Ukkola O, Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med 2002;80:696-702.
    [69] Lafontan M, Viguerie N. Role of adipokines in the control of energy metabolism: focus on adiponectin. Curr Opin Pharmacol 2006;6:580-5.
    [70] Fujimoto N, Matsuo N, Sumiyoshi H, Yamaguchi K, Saikawa T, Yoshimatsu H, et al. Adiponectin is expressed in the brown adipose tissue and surrounding immature tissues in mouse embryos. Biochim Biophys Acta 2005;1731:1-12.
    [71] Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007;117:2621-37.
    [72] Lin HV, Kim JY, Pocai A, Rossetti L, Shapiro L, Scherer PE, et al. Adiponectin resistance exacerbates insulin resistance in insulin receptor transgenic/knockout mice. Diabetes 2007;56:1969-76.
    [73] Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J 2004;68:975-81.
    [74] Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26:439-51.
    [75] Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998;95:7614-9.
    [76] Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82-6.
    [77] Hammarstedt A, Andersson CX, Rotter Sopasakis V, Smith U. The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot Essent Fatty Acids 2005;73:65-75.
    [78] Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006;17:4-12.
    [79] Mohan V, Vijayaprabha R, Rema M, Premalatha G, Poongothai S, Deepa R, et al. Clinical profile of lean NIDDM in South India. Diabetes Res Clin Pract 1997;38:101-8.
    [80] Ramachandran A, Jali MV, Mohan V, Snehalatha C, Viswanathan M. High prevalence of diabetes in an urban population in south India. BMJ 1988;297:587-90.
    [81] Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 2003;112:197-208.
    [82] Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 1992;130:43-52.
    [83] Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000;49:1880-9.
    [84] Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 1997;88:561-72.
    [85] Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002;109:1321-6.
    [86] El Midaoui A, Wu R, de Champlain J. Prevention of hypertension, hyperglycemia and vascular oxidative stress by aspirin treatment in chronically glucose-fed rats. J Hypertens 2002;20:1407-12.
    [87] Perucca E. Drug interactions with nimesulide. Drugs 1993;46 Suppl 1:79-82.
    [88] Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997;272:3406-10.
    [89] Zhang J, Wang J, Wu H, He Y, Zhu G, Cui X, et al. Design, synthesis and insulin-sensitizing activity of indomethacin and diclofenac derivatives. Bioorg Med Chem Lett 2009;19:3324-7.
    [90] Labonte ED, Pfluger PT, Cash JG, Kuhel DG, Roja JC, Magness DP, et al. Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A2 and diet-induced obesity. FASEB J 24:2516-24.
    [91] De Gottardi A, Vinciguerra M, Sgroi A, Moukil M, Ravier-Dall'Antonia F, Pazienza V, et al. Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab Invest 2007;87:792-806.
    [92] Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003;422:173-6.
    [93] Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003;278:11303-11.
    [94] Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009;49:1176-84.
    [95] Long YC, Glund S, Garcia-Roves PM, Zierath JR. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J Biol Chem 2007;282:1607-14.
    [96] Lunde IG, Ekmark M, Rana ZA, Buonanno A, Gundersen K. PPARdelta expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer. J Physiol 2007;582:1277-87.
    [97] Qin X, Xie X, Fan Y, Tian J, Guan Y, Wang X, et al. Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology 2008;48:432-41.
    [98] Arendt BM, Mohammed SS, Aghdassi E, Prayitno NR, Ma DW, Nguyen A, et al. Hepatic fatty acid composition differs between chronic hepatitis C patients with and without steatosis. J Nutr 2009;139:691-5.
    [99] Milner KL, van der Poorten D, Trenell M, Jenkins AB, Xu A, Smythe G, et al. Chronic hepatitis C is associated with peripheral rather than hepatic insulin resistance. Gastroenterology 138:932-41 e1-3.
    [100] Han S, Ritzenthaler JD, Zheng Y, Roman J. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals. Am J Physiol Lung Cell Mol Physiol 2008;294:L1238-49.
    [101] Peyrou M, Bourgoin L, Foti M. PTEN in liver diseases and cancer. World J Gastroenterol 16:4627-33.
    [102] Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med 1997;126:137-45.

    無法下載圖示 校內:2017-01-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE