| 研究生: |
吳長錦 Wu, Chang-Chin |
|---|---|
| 論文名稱: |
應用河川污染指數調整生物完整性指數評分標準 Applying River Pollution Index to Modify the Criteria of Index of Biotic Integrity |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 生物完整性指數 、河川污染指數 、魚類個體生態矩陣 、遺傳演算法 |
| 外文關鍵詞: | Index of Biotic Integrity(IBI), River Pollution Index(RPI), Autecology Matrix, Genetic Algorithm(GA) |
| 相關次數: | 點閱:50 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類活動對於河流生態系統造成一定干擾,如何有效地評估河流健康已是不容忽略的議題。生物評估指標可用來了解干擾對於環境的影響程度,近年來已有許多種生物評估指標應用於評價河川之健康狀態,其中以生物完整性指數(Index of Biotic Integrity, IBI)來進行魚類綜合評估矩陣之建構較為完備。本研究基於生物完整性指數與水質有相關之假設,結合不同流域河川情勢調查所得之魚類及環保署水質採樣資料,以河川污染指數(River Pollution Index, RPI)為不同河段之生物完整性指數的各項指標評分標準進行調整,使IBI分數的分布能更接近於臺灣河川健康狀態之真實情況。
本研究以26個中央管河川流域作為研究區域,將其分為北、中、南、東四區,並參考水利署所制訂各流域之河川治理計畫或河川情勢調查報告將各區分為上、中、下游三部分,將生物完整性指數的9項指標分為整體一同計算及單獨分開計算的兩種模式,利用遺傳演算法進行單目標最佳解搜尋,調整生物完整性指數於各區域的評分標準,並與河川情勢調查報告的版本比較兩者與河川污染指數的相關性。研究結果顯示在模式一或模式二中,除東部河川流域之外,透過遺傳演算法所得到的生物完整性指數評分標準與河川污染指數及污染等級的相關性多數優於河川情勢調查版的評分標準,可以為在臺灣應用生物完整性指數評估河川生態時的評分標準提供一個調整的方向。
Human activities have a certain impact on river ecosystems, and it is crucial to effectively assess the health of rivers. The indicators for biological assessment can be used to understand the impact of disturbance on the environment. In recent years, various indicators for biological assessment, particularly the Index of Biotic Integrity (IBI), have been applied to evaluate the health status of rivers. This study aims to modify the criteria of the IBI to describe the actual conditions of river health in Taiwan, based on the assumption that IBI is related to water quality. The fish and water quality sampling data from different rivers are used to modify the criteria for various indicators of the IBI. River Pollution Index (RPI) is used as the scoring standard for different river sections. The study area includes 26 rivers administered by central government in Taiwan. These areas are divided into four regions: North, Central, South, and East. Based on the Regulation Master Plans formulated or Investigation of Current Status by the Water Resources Agency, each region is divided into upstream, midstream, and downstream reaches. The nine indicators of the IBI are calculated in two models. The Models 1 calculates the indicators at the same time, and the Model 2 calculates the indicators individually. A single-objective optimization search with a genetic algorithm is used to modify the scoring criteria of the IBI in each region. The two scoring versions of IBI are used to calculate the correlation with the pollution levels of RPI. One is the “Optimized Scoring Version” and the other is the “Investigation of Current Status Scoring Version”. The results show that, except for the East region, the criteria for the Index of Biotic Integrity obtained through the genetic algorithm in the two models mentioned above (Optimized Scoring Version) show a higher correlation with the pollution levels of RPI compared to the criteria in the “Investigation of Current Status Scoring Version”. This suggests that modifying the criteria of the IBI considering the RPI is a feasible approach and provides an adjustment framework for applying the IBI to assess river ecology in Taiwan.
Aboua, B., Kouamélan, E., & N’Douba, V. Development of a fish-based index of biotic integrity (FIBI) to assess the quality of Bandama River in Côte d’Ivoire. Knowledge and Management of Aquatic Ecosystems(404), 08. (2012).
Alam, T., Qamar, S., Dixit, A., & Benaida, M. Genetic algorithm: Reviews, implementations, and applications. arXiv preprint arXiv:2007.12673. (2020).
Albadr, M. A. A., Tiun, S., Ayob, M., & AL-Dhief, F. T. Spoken language identification based on optimised genetic algorithm–extreme learning machine approach. International Journal of Speech Technology, 22, 711-727. (2019).
Albadr, M. A. A., Tiun, S., Ayob, M., Al-Dhief, F. T., Omar, K., & Hamzah, F. A. Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection. PloS one, 15(12), e0242899. (2020).
Ávila, M. P., Carvalho, R. N., Casatti, L., Simião-Ferreira, J., de Morais, L. F., & Teresa, F. B. Metrics derived from fish assemblages as indicators of environmental degradation in Cerrado streams. Zoologia, 35, 1-8. (2018).
Bacigalupi, J., Staples, D. F., Treml, M. T., & Bahr, D. L. Development of fish-based indices of biological integrity for Minnesota lakes. Ecological Indicators, 125, 107512. (2021).
Baron, J. S., Poff, N. L., Angermeier, P. L., Dahm, C. N., Gleick, P. H., Hairston Jr, N. G., et al. Meeting ecological and societal needs for freshwater. Ecological Applications, 12(5), 1247-1260. (2002).
Bormann, F. Ecology: a personal history. Annual Review of Energy and the Environment, 21(1), 1-29. (1996).
Boulton, A. J. An overview of river health assessment: philosophies, practice, problems and prognosis. Freshwater biology, 41(2), 469-479. (1999).
Chan, N. W. Managing urban rivers and water quality in Malaysia for sustainable water resources. International Journal of Water Resources Development, 28(2), 343-354. (2012).
Chovanec, A., Schiemer, F., Waidbacher, H., & Spolwind, R. Rehabilitation of a heavily modified river section of the Danube in Vienna (Austria): Biological assessment of landscape linkages on different scales. International Review of Hydrobiology, 87(2‐3), 183-195. (2002).
Deng, X., Xu, Y., Han, L., Yu, Z., Yang, M., & Pan, G. Assessment of river health based on an improved entropy-based fuzzy matter-element model in the Taihu Plain, China. Ecological Indicators, 57, 85-95. (2015).
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews, 81(2), 163-182. (2006).
Flint, R. W. The sustainable development of water resources. Water resources update, 127, 48-59. (2004).
Flint, R. W., & Houser, W. L. Living a sustainable lifestyle for our children's children: IUniverse. (2001).
Francis, R. A. Urban rivers: novel ecosystems, new challenges. Wiley Interdisciplinary Reviews: Water, 1(1), 19-29. (2014).
Gore, J. A., & Shields, F. D. Can large rivers be restored? BioScience, 45(3), 142-152. (1995).
Grossman, G. D., Ratajczak Jr, R. E., Crawford, M., & Freeman, M. C. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecological Monographs, 68(3), 395-420. (1998).
Hua, J., & Chen, W. Y. Prioritizing urban rivers' ecosystem services: An importance-performance analysis. Cities, 94, 11-23. (2019).
Joy, M. K., & Death, R. G. Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environmental management, 34, 415-428. (2004).
Karr, J. R. Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21-27. (1981).
Karr, J. R. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication no. 05. (1986).
Karr, J. R. Biological integrity: a long‐neglected aspect of water resource management. Ecological applications, 1(1), 66-84. (1991).
Karr, J. R. Ecological integrity and ecological health are not the same. Engineering within ecological constraints, 97, 109. (1996).
Karr, J. R. Defining and measuring river health. Freshwater biology, 41(2), 221-234. (1999).
Karr, J. R., & Chu, E. W. Restoring life in running waters: Island press. (1999).
Karr, J. R., & Dudley, D. R. Ecological perspective on water quality goals. Environmental management, 5, 55-68. (1981).
Kennard, M., Arthington, A., Pusey, B., & Harch, B. Are alien fish a reliable indicator of river health? Freshwater Biology, 50(1), 174-193. (2005).
Li, T., Huang, X., Jiang, X., & Wang, X. Assessment of ecosystem health of the Yellow River with fish index of biotic integrity. Hydrobiologia, 814, 31-43. (2018).
Liang, S.-H., & Menzel, B. W. A new method to establish scoring criteria of the index of biotic integrity. Zoological Studies, 36(3), 240-250. (1997).
Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshwater biology, 41(2), 373-391. (1999).
Masson, I., Castelain, J. G., Dubny, S., Othax, N., & Peluso, F. Index of Biotic Integrity based on fish assemblages for pampean streams and its implementation along the Del Azul stream (Buenos Aires province, Argentina). Acta Limnologica Brasiliensia, 33. (2021).
Mebane, C. A., Maret, T. R., & Hughes, R. M. An index of biological integrity (IBI) for Pacific Northwest rivers. Transactions of the American Fisheries Society, 132(2), 239-261. (2003).
Meulenbroek, P., Stranzl, S., Oueda, A., Sendzimir, J., Mano, K., Kabore, I., et al. Fish communities, habitat use, and human pressures in the Upper Volta basin, Burkina Faso, West Africa. Sustainability, 11(19), 5444. (2019).
Norris, R. H., & Thoms, M. C. What is river health? Freshwater biology, 41(2), 197-209. (1999).
Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P. S., et al. Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment, 6(2), 81-89. (2008).
Peng, B., Shi, B., Wang, Y. P., Li, J., Zhang, X., Liu, X., et al. Establishment and application of ecological health evaluation system for urban and rural rivers in Yangtze Estuary. Anthropocene Coasts, 6(1), 1-11. (2023).
Pholdee, T., Montien-art, B., Promya, J., & Suvarnaraksha, A. Application of fish-based index of biotic integrity to assessment of aquatic resource of Mae Ngad Somboonchon Reservoir, Thailand. Maejo International Journal of Science & Technology, 15(3). (2021).
Postel, S., & Richter, B. Rivers for life: managing water for people and nature: Island press. (2012).
Priscoli, J. D. Water and civilization: using history to reframe water policy debates and to build a new ecological realism. Water Policy, 1(6), 623-636. (2000).
Sadoff, C. W., & Grey, D. Beyond the river: the benefits of cooperation on international rivers. Water policy, 4(5), 389-403. (2002).
Sapounidis, A. S., & Koutrakis, E. T. Development of a Fish-Based Multimetric Index for the Assessment of Lagoons’ Ecological Quality in Northern Greece. Water, 13(21), 3008. (2021).
Scholz, G., VanLaarhoven, J., Phipps, L., Favier, D., & Rixon, S. Managing for river health-integrating watercourse management, environmental water requirements and community participation. Water science and technology, 45(11), 209-213. (2002).
Sophocleous, M. Interactions between groundwater and surface water: the state of the science. Hydrogeology journal, 10, 52-67. (2002).
Sparks, R. E. Need for ecosystem management of large rivers and their floodplains. BioScience, 45(3), 168-182. (1995).
Stevens, C., and T. Council. A Fish-based Index of Biological Integrity for Assessing River Condition in Central Alberta. Technical Report, T‐2008‐001, produced by the Alberta Conservation Association, Sherwood Park and Lethbridge, Alberta, Canada. (2008).
Suen, J.-P., & Herricks, E. E. Investigating the causes of fish community change in the Dahan River (Taiwan) using an autecology matrix. Hydrobiologia, 568, 317-330. (2006).
Suen, J.-P., & Herricks, E. E. Developing fish community based ecohydrological indicators for water resources management in Taiwan. Hydrobiologia, 625, 223-234. (2009).
Suren, A. Development of a Fish Index of Biotic Integrity for the Bay of Plenty. Bay of Plenty Regional Council. (2016).
Tejerina-Garro, F. L., de Mérona, B., Oberdorff, T., & Hugueny, B. A fish-based index of large river quality for French Guiana (South America): method and preliminary results*. Aquat. Living Resour., 19(1), 31-46. (2006).
Tockner, K., Ward, J. V., Arscott, D. B., Edwards, P. J., Kollmann, J., Gurnell, A. M., et al. The Tagliamento River: a model ecosystem of European importance. Aquatic Sciences, 65, 239-253. (2003).
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. The river continuum concept. Canadian journal of fisheries and aquatic sciences, 37(1), 130-137. (1980).
Westra, L., Miller, P., Karr, J. R., Rees, W. E., & Ulanowicz, R. E. Ecological integrity and the aims of the global integrity project. Ecological integrity: Integrating environment, conservation, and health, 25. (2000).
朱達仁,臺北縣雙溪鄉后番仔坑溪應用生態工法整治影響及生態監測評估之研究,第十四屆水利工程研討會,國立交通大學土木工程學系,D-91~ D-98,2004。
朱達仁,魚類污染耐受指標之建構對納入 IBI 模式評估溪流整治之差異研究,中華建築學刊,1(2),43-49,2005。
朱達仁、李宗儒,應用IBI進行工程影響評估時之生物多樣性指數矩陣因素分析研究,第二屆營建產業永續發展研討會,2005b。
朱達仁,溪流複合式指標評估模式之建構,特有生物研究,8(1),35-56,2006。
李懿行,都市健康河川棲地評估架構:以筏子溪為例。朝陽科技大學,台中市,取自https://hdl.handle.net/11296/xxvz5q,2007。.
林信輝、蔡志偉、李明儒,Establishment and Application of Index of Biotic Integrity-A Case Study in Tou-Bian-Keng Creek Watershed,水土保持學報,39(1),1-13,2007。
林昱廷,河口揚塵之健康風險分析-以大安、大甲溪為例。東海大學,台中市,取自https://hdl.handle.net/11296/2rbx5e,2017。
邵廣昭,臺灣魚類資料庫 網路電子版,https://fishdb.sinica.edu.tw/,2023,檢索日期:2023/01/19。
紀怡君,應用健康河川指標評估攔河堰對河川生態之影響。逢甲大學,台中市,取自https://hdl.handle.net/11296/w822e4,2008。
孫建平、曹先紹、Herricks, E. E.,魚類生態矩陣之建立及其於生態工程之應用,臺灣水利,53(2),86-93,2005。
孫建平, & 邱宏彬,河川生態評估指標用於河川工程之探討,土木水利,49(2),17-20,2022。
張明雄、王慎之、張廖年鴻、邵廣昭,淡水河系生物相調查及生物指標手冊建立,p.7-1~7-29.,1999。
許哲瑜,整合模糊德爾菲法與模糊分析網絡程序法建構及評估河流景觀健康之研究。國立中興大學,台中市,取自https://hdl.handle.net/11296/e8f8qj,2014。
陳義雄、方力行,台灣淡水及河口魚類誌,國立海洋生物博物館籌備處,1999。
陳伊昱,河川水文、水理與棲地生態相關之研究。中華大學,新竹市,取自https://hdl.handle.net/11296/s59c7u,2007。
陳怡蒨,建構健康河川指標體系-以淡水河流域為例。逢甲大學,台中市,取自https://hdl.handle.net/11296/4x2f35,2007。
黃國文、王筱雯、楊津豪、施上粟、胡通哲、李鴻源,發展魚類環境矩陣研析魚類族群棲地需求偏好之研究,中國土木水利工程學刊,21(3),261-274,2009。
楊津豪,河川生態廊道與魚類物理棲地之水理模式研究。國立臺灣大學,台北市,取自https://hdl.handle.net/11296/r5vkhd,2006。
經濟部水利署,淡水河水系基隆河治理基本計畫,經濟部水利署,2007。
經濟部水利署,大安溪水系本流(士林攔河堰至白布帆大橋)治理計畫(含支流烏石坑溪),經濟部水利署,2009。
經濟部水利署,大甲溪治理基本計畫(天輪分廠至長庚橋河段),經濟部水利署,2010a。
經濟部水利署,大甲溪治理基本計畫(天輪壩至天輪分廠河段),經濟部水利署,2010b。
經濟部水利署,大安溪水系治理計畫(梅象橋至士林攔河堰),經濟部水利署,2011a。
經濟部水利署,東港溪中上游段治理計畫(麟洛溪排水匯流口~萬安溪及牛角灣溪匯流口),經濟部水利署,2011b。
經濟部水利署,二仁溪治理計畫(高速公路橋至崇德橋河段).,經濟部水利署,2013a。
經濟部水利署,二仁溪治理計畫(崇德橋至德和橋河段)(含支流牛稠埔溪),經濟部水利署,2013b。
經濟部水利署,大安溪水系大安溪治理計畫( 斷面30-33 局部修訂),經濟部水利署,2014a。
經濟部水利署,阿公店溪治理計畫(河口至阿公店水庫溢洪管終點),經濟部水利署,2014b。
經濟部水利署,中港溪水系主流(含南庄溪)治理計畫.,經濟部水利署,2015a。
經濟部水利署,四重溪水系主流治理計畫(第一次修正),經濟部水利署,2015b。
經濟部水利署,鹽水溪治理計畫(含支流那拔林溪).,經濟部水利署,2015c。
經濟部水利署,急水溪水系本流及支流白水溪治理計畫,經濟部水利署,2017。
經濟部水利署,淡水河水系大漢溪治理計畫,經濟部水利署,2018。
經濟部水利署,中央管河川重要河川圖,https://www.wra.gov.tw/cp.aspx?n=3257&dn=3258,2023,檢索日期:2023/01/19。
經濟部水利署第九河川局,秀姑巒溪水系治理規劃檢討,經濟部水利署第九河川局,2015。
經濟部水利署第八河川局,卑南溪流域整體改善與調適規劃(1/2),經濟部水利署第八河川局,2022。
經濟部水利署第三河川局,烏溪水系河川情勢調查計畫,經濟部水利署第三河川局,2020。
經濟部水利署第四河川局,濁水溪水系河川情勢調查總報告,經濟部水利署第四河川局,2017。
臺灣省水利局,鳳山溪治理基本計畫,臺灣省水利局,1981。
臺灣省水利局,後龍溪治理基本計畫,臺灣省水利局,1982。
臺灣省水利局,宜蘭河基本治理計畫,臺灣省水利局,1984。
臺灣省水利局,頭前溪治理基本計畫,臺灣省水利局,1985。
臺灣省水利局,八掌溪治理基本計畫,臺灣省水利局,1986。
臺灣省水利局,花蓮溪水系治理基本計畫,臺灣省水利局,1991。
臺灣省水利局,和平溪水系治理基本計畫,臺灣省水利局,1992。
臺灣省水利局,北港溪水系治理基本計畫,臺灣省水利局,1995。
臺灣省水利局,東港溪治理計畫(第一次修訂)(麟洛排水合流點至河口),臺灣省水利局,1997。
臺灣省政府水利處,朴子溪(含牛稠溪)治理基本計畫(第二次修訂)(高速公路橋上游段),臺灣省政府水利處,1998。
劉昌明、劉曉燕,河流健康理論初探,地理學報,63(7),683-692,2008。
劉晉維,淡水河中下游區域大型底棲生物與魚類群聚結構分析與污染水質指標之應用,國立新竹教育大學,新竹市,取自https://hdl.handle.net/11296/7b2n85,2014。