簡易檢索 / 詳目顯示

研究生: 安莫山
Muhammad Zeeshan Ali
論文名稱: 多元感測資料時空整合於地層下陷與地下水推估
Multi-sensor data integration of spatio-temporal land subsidence & groundwater estimation
指導教授: 朱宏杰
Chu, Hone-Jay
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 110
中文關鍵詞: 数据整合空间回归地面沉降地下水时间序列分析
外文關鍵詞: Data integration, Spatial regression, Land subsidence, Groundwater, Time Series Analysis
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract:
    Land subsidence is a severe problem worldwide. The land subsidence usually occurs in the urban and agriculture area where we have high groundwater extraction. Currently, due to water demand growth and climatic change, the groundwater storage or subsidence change is becoming more critical.
    This research considered most severe land subsidence area in Taiwan (Yunlin and Changhua county) and India for regional case studies. The subsidence data for different sensors (leveling, GPS and compaction wells) is available in the area, and groundwater storage information from GRACE data is also available globally. Due to the spatial heterogeneous relationship between the land subsidence and groundwater variations (spatially varying land subsidence due to groundwater extraction), spatial regression model has developed. Considering various data integration multiple sensors, spatial regression model offers a robust method for accurately estimating the spatial pattern of land subsidence from the groundwater drawdown. The dataset from remote sending is integrated with the ground observation data to develop the spatially varying skeletal storage coefficient which help to predict the groundwater variation by using only the remote sensing data. Hydraulic head change estimation model has been developed, where the GPS based subsidence is utilized for monthly hydraulic head change and further the hydraulic head estimations. Subsidence sensors at different locations show us the variation for space and time in the area. For the regional scale the GRACE based spatial mapping shown the high prone area, the ground observation wells data is integrated with the GRACE based GWS to develop the spatial maps of depth to groundwater level from whole India. This spatial regression model helps to integrate the remote sensing and ground observation data to develop the spatially varying groundwater level maps.
    The research findings show that the spatial models used in this study have high accuracy and reliability using the spatial dependency between groundwater and land subsidence without requiring the extensive calibrations or numerical models. The spatially distributed monitoring data of groundwater monitoring wells have estimated annual land subsidence for multiple years with the root mean square error (RMSE) of 0.6 cm using the spatial and temporal regression model. InSAR data is integrated with the ground observation data for annual groundwater drawdown with the estimation and predication accuracy of 0.93 and 0.7 r- square. The InSAR based land subsidence considering the spatial pattern using the spatial regression model for the estimation of groundwater drawdown, which cannot be considered using the traditional regression model. Data integration helped us to model the spatial pattern of hydraulic head change using GPS based subsidence. The spatial model is further used for estimation of monthly hydraulic head using GPS based land subsidence. Moreover, GRACE data are used to find the regional groundwater storage change with the integration of hydrological components. GWS based the spatial maps show the sufficient groundwater storage in the monsoon season in southern part of India. Finally, the regression model validation shows that the RMSE is 3 to 4 m in the regional area for the depth to groundwater level estimation.

    Abstract: i Acknowledgments iii Table of Figures ix Table of Abbreviations xii 1. Introduction 1 1.1. Background 1 1.2. Groundwater extraction and land subsidence relationship 2 1.3. Problem Statement 3 1.4. Research Objectives: 5 1.5. Thesis Structure 6 1.6. Data utilization with reference to Chapters 8 1.7. Thesis overall Chapter-wise Input/output & methodology 8 2. Land subsidence estimation using spatio-temporal regression models from monitoring wells data of groundwater-drawdown 12 2.1 Introduction 12 2.1.1 Description of the study area 13 2.1.2. Pertinent Datasets 14 2.2 Methodology 15 2.2.1 Data preparation 15 2.2.2 Drawdown-subsidence model 16 2.2.3 Model coefficient map and scenario for drawdown reduction 18 2.3 Results and Discussion 18 2.3.1 Spatio-temporal groundwater depletion 18 2.3.2 Land subsidence estimation using GWR and GTWR 20 2.3.3 Spatial pattern of model coefficients 24 2.3.4 Scenarios for reduced drawdown 27 2.4 Conclusion 28 3. Estimating annual groundwater drawdown from InSAR-derived land subsidence 30 3.1. Introduction 30 3.2. Material & Study area 32 3.2.1. SAR data 32 3.2.2. Ground observation data 33 3.2.3. Study Area 34 3.3. Methods 36 3.3.1. Subsidence monitoring from InSAR processing 36 3.3.2. Estimation and prediction of groundwater drawdown 37 3.4. Results & Discussion 39 3.4.1. D-InSAR land deformation 39 3.4.2. Groundwater level drawdown estimation 40 3.5. Conclusions 45 4. Spatio-temporal estimation of monthly groundwater levels from GPS-based land deformation 47 4.1. Introduction 47 4.1.1. Study area 49 4.2. Material and Methods 51 4.2.1. Datasets 51 4.2.2. Methods 51 4.2.2.1. Definition of head change and deformation (Stress/ Strain) 52 4.2.2.2. Spatio-temporal model for estimating deformation and hydraulic heads 53 4.3. Results and Discussion 54 4.3.1. GPS based deformation and compaction-well data Comparison 54 4.3.2. Time series analysis of deformation & head change 57 4.3.3. The relationship between land subsidence and head change 60 4.3.4. Spatial mapping of groundwater level changes from observed deformation 62 4.3.5. Model validation and spatiotemporal result 64 4.4. Conclusion 68 5. Spatio-Temporal Mapping of Groundwater Storage & depth Change with evaluation of land subsidence from GRACE, SAR and ground observation data 70 5.1 Introduction 70 5.2. Study area & Dataset 72 5.2.1. Study area 72 5.2.2. Datasets 74 5.2.2.1. GRACE dataset 74 5.2.2.2. GLDAS data 75 5.2.2.3. TRMM data 75 5.2.2.4. Ground monitoring wells data 75 5.3. Methods 76 5.3.1. GRACE 76 5.3.2. GRACE based GWS times-series & monthly spatial mapping 77 5.3.3. Trend analysis 78 5.3.4. Spatial estimation and prediction of depth to groundwater level 79 5.4. Result & Discussion 80 5.4.1. Monthly spatio-temporal mapping of GWS variation 80 5.4.2. GWS times series in hotspots of India 83 5.4.3. Validation results with ground observation monitoring stations 88 5.4.4. Depth to groundwater level estimation from GRACE based GWS 91 5.5. Conclusion 94 6. Conclusion and Future work 95 6.1. Evaluation of spatial regression models for land subsidence prediction from groundwater drawdown 95 6.2. InSAR & GPS based land subsidence for estimation & prediction of groundwater variation 96 6.3. Regional GWS for estimation of depth to GW level case 97 6.4. Future work 98 References 99

    1. Abidin, H. Z., H. Andreas, R. Djaja, D. Darmawan and M. Gamal (2008). Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solutions 12(1): 23-32.
    2. Abidin, H. Z., R. Djaja, D. Darmawan, S. Hadi, A. Akbar, H. Rajiyowiryono, Y. Sudibyo, I. Meilano, M. A. Kasuma, J. Kahar and C. Subarya (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards 23(2-3): 365-387.
    3. Alfarrah, N. and K. Walraevens (2018). Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 10(2).
    4. Ali, M. Z., H.-J. Chu and T. J. Burbey (2020). Mapping and predicting subsidence from spatio-temporal regression models of groundwater-drawdown and subsidence observations. Hydrogeology Journal 28(8): 2865-2876.
    5. Ali, M. Z., H. J. Chu, Tatas and T. J. Burbey (2021). Spatio-temporal estimation of monthly groundwater levels from GPS-based land deformation. Environmental Modelling & Software 143.
    6. Alley, W. M., R. W. Healy, J. W. LaBaugh and T. E. Reilly (2002). Flow and storage in groundwater systems. Science 296(5575): 1985-1990.
    7. Amelung, F., D. L. Galloway, J. W. Bell, H. A. Zebker and R. J. Laczniak (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6): 483-486.
    8. Argus, D. F., Y. N. Fu and F. W. Landerer (2014). Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophysical Research Letters 41(6): 1971-1980.
    9. Asoka, A., T. Gleeson, Y. Wada and V. Mishra (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience 10(2): 109-+.
    10. Bawden, G. W., W. Thatcher, R. S. Stein, K. W. Hudnut and G. Peltzer (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412(6849): 812-815.
    11. Béjar-Pizarro, M., P. Ezquerro, G. Herrera, R. Tomás, C. Guardiola-Albert, J. M. Ruiz Hernández, J. A. Fernández Merodo, M. Marchamalo and R. Martínez (2017). Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology 547: 678-689.
    12. Bejar-Pizarro, M., C. Guardiola-Albert, R. P. Garcia-Cardenas, G. Herrera, A. Barra, A. L. Molina, S. Tessitore, A. Staller, J. A. Ortega-Becerril and R. P. Garcia-Garcia (2016). Interpolation of GPS and Geological Data Using InSAR Deformation Maps: Method and Application to Land Subsidence in the Alto Guadalentin Aquifer (SE Spain). Remote Sensing 8(11).
    13. Bell, J. W., F. Amelung, A. Ferretti, M. Bianchi and F. Novali (2008). Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resources Research 44(2).
    14. Bernstein, L., P. Bosch, O. Canziani, Z. Chen, R. Christ and K. Riahi (2008). IPCC, 2007: climate change 2007: synthesis report, IPCC.
    15. Bhanja, S. N., A. Mukherjee, D. Saha, I. Velicogna and J. S. Famiglietti (2016). Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. Journal of Hydrology 543: 729-738.
    16. Bhawan, S. and R. Puram (2014). WATERSHED ATLAS OF INDIA.
    17. Billah, M. M., J. L. Goodall, U. Narayan, J. T. Reager, V. Lakshmi and J. S. Famiglietti (2015). A methodology for evaluating evapotranspiration estimates at the watershed-scale using GRACE. Journal of Hydrology 523: 574-586.
    18. Bonì, R., F. Cigna, S. Bricker, C. Meisina and H. McCormack (2016). Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data. Journal of Hydrology 540: 835-849.
    19. Boots, B. (2003). Geographically weighted regression: The analysis of spatially varying relationships. International Journal of Geographical Information Science 17(7): 717-719.
    20. Bozzano, F., C. Esposito, S. Franchi, P. Mazzanti, D. Perissin, A. Rocca and E. Romano (2015). Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study. Remote Sensing of Environment 168: 219-238.
    21. Brown, S. and R. J. Nicholls (2015). Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. Science of the Total Environment 527: 362-374.
    22. Burbey, T. J. (2003). Use of time–subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units. Journal of Hydrology 281(1): 3-22.
    23. Burbey, T. J. (2006). Three-dimensional deformation and strain induced by municipal pumping, Part 2: Numerical analysis. Journal of Hydrology 330(3): 422-434.
    24. Burbey, T. J. and D. C. Helm (1999). Modeling three-dimensional deformation in response to pumping of unconsolidated aquifers. Environmental & Engineering Geoscience 5(2): 199-212.
    25. Castellazzi, P., N. Arroyo-Dominguez, R. Martel, A. I. Calderhead, J. C. L. Normand, J. Garfias and A. Rivera (2016). Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation 47: 102-111.
    26. Castellazzi, P., L. Longuevergne, R. Martel, A. Rivera, C. Brouard and E. Chaussard (2018). Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach. Remote Sensing of Environment 205: 408-418.
    27. Changnon, S. A., F. A. Huff and C. F. Hsu (1988). Relations between Precipitation and Shallow Groundwater in Illinois. Journal of Climate 1(12): 1239-1250.
    28. Chaussard, E., R. Burgmann, M. Shirzaei, E. J. Fielding and B. Baker (2014). Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. Journal of Geophysical Research-Solid Earth 119(8): 6572-6590.
    29. Chaussard, E., S. Wdowinski, E. Cabral-Cano and F. Amelung (2014). Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment 140: 94-106.
    30. Chen, C.-H., C.-H. Wang, Y.-J. Hsu, S.-B. Yu and L.-C. Kuo (2010). Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Engineering Geology 115(1): 122-131.
    31. Chen, J. L., C. R. Wilson, B. D. Tapley, B. Scanlon and A. Guntner (2016). Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Global and Planetary Change 139: 56-65.
    32. Chen, J. Y., R. Knight, H. A. Zebker and W. A. Schreuder (2016). Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resources Research 52(5): 3623-3636.
    33. Chew, C. C. and E. E. Small (2014). Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies. Geophysical Research Letters 41(17): 6145-6151.
    34. Chinnasamy, P., J. A. Hubbart and G. Agoramoorthy (2013). Using Remote Sensing Data to Improve Groundwater Supply Estimations in Gujarat, India. Earth Interactions 17.
    35. Chu, H. J., B. Huang and C. Y. Lin (2015). Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmospheric Environment 102: 176-182.
    36. Chu, H. J., S. J. Kong and C. H. Chang (2018). Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression. International Journal of Applied Earth Observation and Geoinformation 65: 1-11.
    37. Chu, H. J., C. W. Lin, T. J. Burbey and M. Z. Ali (2020). Spatiotemporal Analysis of Extracted Groundwater Volumes Estimated from Electricity Consumption. Groundwater 58(6): 962-972.
    38. Dai, Y. J., X. B. Zeng, R. E. Dickinson, I. Baker, G. B. Bonan, M. G. Bosilovich, A. S. Denning, P. A. Dirmeyer, P. R. Houser, G. Y. Niu, K. W. Oleson, C. A. Schlosser and Z. L. Yang (2003). The Common Land Model. Bulletin of the American Meteorological Society 84(8): 1013-1023.
    39. Deckert, C. and P. V. Bolstad (1996). Forest canopy, terrain, and distance effects on global positioning system point accuracy. Photogrammetric Engineering and Remote Sensing 62(3): 317-321.
    40. Doll, P., H. Hoffmann-Dobrev, F. T. Portmann, S. Siebert, A. Eicker, M. Rodell, G. Strassberg and B. R. Scanlon (2012). Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics 59-60: 143-156.
    41. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno and J. D. Tarpley (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research-Atmospheres 108(D22).
    42. Eltahir, E. A. B. and P. A. J. F. Yeh (1999). On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resources Research 35(4): 1199-1217.
    43. Ericson, J. P., C. J. Vorosmarty, S. L. Dingman, L. G. Ward and M. Meybeck (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change 50(1-2): 63-82.
    44. Ezquerro, P., G. Herrera, M. Marchamalo, R. Tomas, M. Bejar-Pizarro and R. Martinez (2014). A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. Journal of Hydrology 519: 1192-1204.
    45. Ezquerro, P., R. Tomas, M. Bajar-Pizarro, J. A. Fernandez-Merodo, C. Guardiola-Albert, A. Staller, J. A. Sanchez-Sobrino and G. Herrera (2020). Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities. Science of the Total Environment 703.
    46. Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change 4(11): 945-948.
    47. Feng, W., M. Zhong, J. M. Lemoine, R. Biancale, H. T. Hsu and J. Xia (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research 49(4): 2110-2118.
    48. Ferrant, S., S. Gascoin, A. Veloso, J. Salmon-Monviola, M. Claverie, V. Rivalland, G. Dedieu, V. Demarez, E. Ceschia, J. L. Probst, P. Durand and V. Bustillo (2014). Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration. Hydrology and Earth System Sciences 18(12): 5219-5237.
    49. Fotheringham, A. S., R. Crespo and J. Yao (2015). Geographical and temporal weighted regression (GTWR). Geographical analysis 47(4): 431-452.
    50. Fu, Y. N., J. T. Freymueller and T. Jensen (2012). Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophysical Research Letters 39.
    51. Galloway, D. L., G. Erkens, E. L. Kuniansky and J. C. Rowland (2016). Preface: Land subsidence processes. Hydrogeology Journal 24(3): 547-550.
    52. Galloway, D. L., K. W. Hudnut, S. E. Ingebritsen, S. P. Phillips, G. Peltzer, F. Rogez and P. A. Rosen (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research 34(10): 2573-2585.
    53. Goldstein, R. M. and C. L. Werner (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters 25(21): 4035-4038.
    54. Gong, H., Y. Pan, L. Zheng, X. Li, L. Zhu, C. Zhang, Z. Huang, Z. Li, H. Wang and C. Zhou (2018). Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeology Journal 26(5): 1417-1427.
    55. Gong, H., Y. Pan, L. Zheng, X. Li, L. Zhu, C. Zhang, Z. Huang, Z. Li, H. Wang and C. J. H. J. Zhou (2018). Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). 26(5): 1417-1427.
    56. Gonzalez, P. J. and J. Fernandez (2011). Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology 39(6): 551-554.
    57. Guhathakurta, P. and M. Rajeevan (2008). Trends in the rainfall pattern over India. International Journal of Climatology 28(11): 1453-1469.
    58. Hora, T., V. Srinivasan and N. B. Basu (2019). The Groundwater Recovery Paradox in South India. Geophysical Research Letters 46(16): 9602-9611.
    59. Hsieh, C. S., T. Y. Shih, J. C. Hu, H. Tung, M. H. Huang and J. Angelier (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural Hazards 58(3): 1311-1332.
    60. Hsu, W. C., H. C. Chang, K. T. Chang, E. K. Lin, J. K. Liu and Y. A. Liou (2015). Observing Land Subsidence and Revealing the Factors That Influence It Using a Multi-Sensor Approach in Yunlin County, Taiwan. Remote Sensing 7(6): 8202-8223.
    61. Huang, B., B. Wu and M. Barry (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science 24(3): 383-401.
    62. Hussain, D., H. Kao, A. A. Khan, W. Lan, M. Imani, C. Lee and C. Kuo (2020). Spatial and Temporal Variations of Terrestrial Water Storage in Upper Indus Basin Using GRACE and Altimetry Data. IEEE Access 8: 65327-65339.
    63. Jang, C. S., S. K. Chen and L. Ching-Chieh (2008). Using multiple-variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan. Hydrological Processes 22(22): 4477-4489.
    64. Jeanne, P., T. G. Farr, J. Rutqvist and D. W. Vasco (2019). Role of agricultural activity on land subsidence in the San Joaquin Valley, California. Journal of Hydrology 569: 462-469.
    65. Ji, K. H. and T. A. Herring (2012). Correlation between changes in groundwater levels and surface deformation from GPS measurements in the San Gabriel Valley, California. Geophysical Research Letters 39.
    66. Jia, Y., B. Xi, Y. Jiang, H. Guo, Y. Yang, X. Lian and S. Han (2018). Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Science of the Total Environment 643: 967-993.
    67. Joint, F., W. E. C. o. F. Additives and W. H. Organization (2011). Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), World Health Organization.
    68. Koster, R. D. and M. J. Suarez (1996). Energy and water balance calculations in the Mosaic LSM, National Aeronautics and Space Administration, Goddard Space Flight Center ….
    69. Lee, M., C. Y. Yu, P. C. Chiang and C. H. Hou (2018). Water-Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan. Water 10(12).
    70. Li, Y., H. Gong, L. Zhu and X. Li (2017). Measuring spatiotemporal features of land subsidence, groundwater drawdown, and compressible layer thickness in Beijing Plain, China. Water 9(1): 64.
    71. Liang, X., D. P. Lettenmaier, E. F. Wood and S. J. Burges (1994). A Simple Hydrologically Based Model of Land-Surface Water and Energy Fluxes for General-Circulation Models. Journal of Geophysical Research-Atmospheres 99(D7): 14415-14428.
    72. Lin, A. T. and A. B. Watts (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research-Solid Earth 107(B9).
    73. Liu, C.-H., Y.-W. Pan, J.-J. Liao, C.-T. Huang and S. Ouyang (2004). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology 45(8): 1154-1166.
    74. Liu, C.-W., C.-S. Jang and C.-M. Liao (2004). Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment 321(1): 173-188.
    75. Livingston, M. L. and A. Garrido (2004). Entering the policy debate: An economic evaluation of groundwater policy in flux. Water Resources Research 40(12).
    76. Long, D., X. Chen, B. R. Scanlon, Y. Wada, Y. Hong, V. P. Singh, Y. Chen, C. Wang, Z. Han and W. Yang (2016). Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Scientific Reports 6(1): 24398.
    77. Long, D., Y. J. Shen, A. Sun, Y. Hong, L. Longuevergne, Y. T. Yang, B. Li and L. Chen (2014). Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sensing of Environment 155: 145-160.
    78. Longuevergne, L., B. R. Scanlon and C. R. Wilson (2010). GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resources Research 46.
    79. Malavieille, J., S. E. Lallemand, S. Dominguez, A. Deschamps, C.-Y. Lu, C.-S. Liu, P. Schnurle and A. J. S. P.-G. S. O. A. Crew (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. 187-211.
    80. Margat, J. and J. Van der Gun (2013). Groundwater around the world: a geographic synopsis, Crc Press.
    81. Miller, M. M. and M. Shirzaei (2015). Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. Journal of Geophysical Research-Solid Earth 120(8): 5822-5842.
    82. Minderhoud, P. S. J., G. Erkens, V. H. Pham, V. T. Bui, L. Erban, H. Kooi and E. Stouthamer (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental Research Letters 12(6).
    83. Mukherjee, A. (2018). Overview of the Groundwater of South Asia. Groundwater of South Asia. A. Mukherjee. Singapore, Springer Singapore: 3-20.
    84. Mukherjee, A., D. Saha, C. F. Harvey, R. G. Taylor, K. M. Ahmed and S. N. Bhanja (2015). Groundwater systems of the Indian Sub-Continent. Journal of Hydrology: Regional Studies 4: 1-14.
    85. Othman, A., M. Sultan, R. Becker, S. Alsefry, T. Alharbi, E. Gebremichael, H. Alharbi and K. Abdelmohsen (2018). Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation. Surveys in Geophysics 39(3): 543-566.
    86. Panda, D. K. and J. Wahr (2016). Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resources Research 52(1): 135-149.
    87. Pepe (2012). Advanced multitemporal phase unwrapping techniques for DInSAR analyses. 57-82.
    88. Qin, H., C. B. Andrews, F. Tian, G. Cao, Y. Luo, J. Liu and C. Zheng (2018). Groundwater-pumping optimization for land-subsidence control in Beijing plain, China. Hydrogeology Journal 26(4): 1061-1081.
    89. Qu, F. F., Q. Zhang, Z. Lu, C. Y. Zhao, C. S. Yang and J. Zhang (2014). Land subsidence and ground fissures in Xi'an, China 2005-2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment 155: 366-376.
    90. Ramillien, G., R. Biancale, S. Gratton, X. Vasseur and S. Bourgogne (2011). GRACE-derived surface water mass anomalies by energy integral approach: application to continental hydrology. Journal of Geodesy 85(6): 313-328.
    91. Raspini, F., C. Loupasakis, D. Rozos and S. Moretti (2013). Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (Northern Greece). Natural Hazards and Earth System Sciences 13(10): 2425-2440.
    92. Reeves, J. A., R. Knight and H. A. Zebker (2014). An Analysis of the Uncertainty in InSAR Deformation Measurements for Groundwater Applications in Agricultural Areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(7): 2992-3001.
    93. Rezaei, A., H. Hassani, S. Hassani, N. Jabbari, S. B. Fard Mousavi and S. Rezaei (2019). Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundwater for Sustainable Development 9: 100245.
    94. Rezaei, A., Z. Mousavi, F. Khorrami and H. Nankali (2020). Inelastic and elastic storage properties and daily hydraulic head estimates from continuous global positioning system (GPS) measurements in northern Iran. Hydrogeology Journal 28(2): 657-672.
    95. Richey, A. S., B. F. Thomas, M. H. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson and M. Rodell (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research 51(7): 5217-5238.
    96. Riley, F. S. J. L. s. (1969). Analysis of borehole extensometer data from central California. 2: 423-431.
    97. Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann and D. Toll (2004). The global land data assimilation system. Bulletin of the American Meteorological Society 85(3): 381-+.
    98. Rodell, M., I. Velicogna and J. S. Famiglietti (2009). Satellite-based estimates of groundwater depletion in India. Nature 460(7258): 999-1002.
    99. Save, H., S. Bettadpur and B. D. Tapley (2012). Reducing errors in the GRACE gravity solutions using regularization. Journal of Geodesy 86(9): 695-711.
    100. Scanlon, B. R., I. Jolly, M. Sophocleous and L. Zhang (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research 43(3).
    101. Scanlon, B. R., L. Longuevergne and D. Long (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research 48.
    102. Shamsudduha, M., R. G. Taylor and L. Longuevergne (2012). Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water Resources Research 48.
    103. Smith, A. P., B. Bond-Lamberty, B. W. Benscoter, M. M. Tfaily, C. R. Hinkle, C. Liu and V. L. Bailey (2017). Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nature Communications 8(1): 1335.
    104. Sneed, M., M. T. Pavelko and D. L. Galloway (2000). MODELING RESIDUAL AQUIFER-SYSTEM COMPACTION: CONSTRAINING, TIIE VERTICAL, HYDRAULIC DIFFUSIVITY OF THICK. AQUITARDS.
    105. Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge university press.
    106. Strassberg, G., B. R. Scanlon and M. Rodell (2007). Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophysical Research Letters 34(14).
    107. Swenson, S., P. J. F. Yeh, J. Wahr and J. Famiglietti (2006). A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophysical Research Letters 33(16).
    108. Syvitski, J. P. M. (2008). Deltas at risk. Sustainability Science 3(1): 23-32.
    109. Syvitski, J. P. M., C. J. Vorosmarty, A. J. Kettner and P. Green (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720): 376-380.
    110. Takagi, H., D. Fujii, M. Esteban and X. Yi (2017). Effectiveness and Limitation of Coastal Dykes in Jakarta: The Need for Prioritizing Actions against Land Subsidence. Sustainability 9(4).
    111. Tangdamrongsub, N., S. C. Ha, M. F. Jasinski and M. Sprlak (2019). Quantifying water storage change and land subsidence induced by reservoir impoundment using GRACE, Landsat, and GPS data. Remote Sensing of Environment 233.
    112. Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson and M. M. Watkins (2004). GRACE measurements of mass variability in the Earth system. Science 305(5683): 503-505.
    113. Terzaghi, K. J. E. N.-R. (1925). Principles of soil mechanics, IV—Settlement and consolidation of clay. 95(3): 874-878.
    114. Theodossiou, N. and P. Latinopoulos (2006). Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environmental Modelling & Software 21(7): 991-1000.
    115. Tung, H. and J.-C. Hu (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics 578: 126-135.
    116. Varouchakis, Ε. A. and D. T. Hristopulos (2013). Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environmental Monitoring and Assessment 185(1): 1-19.
    117. Vousdoukas, M. I., L. Mentaschi, E. Voukouvalas, M. Verlaan and L. Feyen (2017). Extreme sea levels on the rise along Europe's coasts. Earths Future 5(3): 304-323.
    118. Wada, Y. and M. F. P. Bierkens (2014). Sustainability of global water use: past reconstruction and future projections. Environmental Research Letters 9(10).
    119. Wang, C. T., K. S. Chen, J. C. Hu, W. Y. Chang and W. M. Boerner (2011). Mapping land uplift and subsidence in the industrial parks in northern Taiwan by radar interferometry. International Journal of Remote Sensing 32(21): 6527-6538.
    120. Watkins, M. M., D. N. Wiese, D. N. Yuan, C. Boening and F. W. Landerer (2015). Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research-Solid Earth 120(4): 2648-2671.
    121. Yu, H. L. and H. J. Chu (2010). Understanding space-time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology 381(3-4): 239-247.
    122. Yu, S. B., H. Y. Chen and L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics 274(1-3): 41-59.
    123. Zektser, I. S. and L. G. Everett (2004). Groundwater resources of the world and their use.
    124. Zou, J., Z. Xie, C. Zhan, P. Qin, Q. Sun, B. Jia and J. Xia (2015). Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China. Journal of Hydrology 524: 625-641.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE