| 研究生: |
黃怡安 Huang, I-an |
|---|---|
| 論文名稱: |
磺酸化聚苯胺披覆硫/石墨烯電極之合成與鑑定及其在鋰硫電池之應用 Synthesis and Characterization of Sulfonated-Polyaniline Coated Sulfur/Graphene Applied for Lithium-Sulfur Batteries |
| 指導教授: |
郭炳林
L.Kuo, P. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 鋰硫電池 、聚苯胺 、石墨烯 、磺酸化 |
| 外文關鍵詞: | Li-S batteries, polyaniline, graphene, sulfonation |
| 相關次數: | 點閱:119 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先製備硫/石墨烯複材,再以苯胺聚合披覆硫/石墨烯複材表面,形成聚苯胺披覆硫/石墨烯 (SGA),接著藉由熱處理使硫與聚苯胺產生鍵結 (SGAh),最後經由磺酸化反應得到磺酸化聚苯胺披覆硫/石墨烯複合材料 (SGAhP)。於鑑定方面,由IR可知聚苯胺與硫產生鍵結以及磺酸根成功地反應於聚苯胺上,由SEM可看出聚苯胺披覆之後的產物有表面型態改變,由四點探針量測導電度得知,有加入高導電度的石墨烯以及導電高分子聚苯胺的聚苯胺披覆硫/石墨烯複合材料較單純硫正極可以提升超過102倍導電度,最後可由XRD得知熱處理會造成聚苯胺與硫反應,改變硫的結晶性。使用CR2032鈕扣型電池對材料進行電化學測試,SGAhP正極在低放電速率100mA/g下的放電電容量為869 mAh/g,是硫正極放電電容量296 mAh/g的將近3倍。在充放電100圈後,熱處理後的SGA (即SGAh複合材),因為升溫到300oC使聚苯胺與硫反應形成較穩定的結構,電容量還保有53.75%,而進一步在表面用磺酸根修飾的SGAhP正極更可以阻擋Sn2-的遷移,電容量更保有78.25%的高電容量維持率,相較於S的3.72%穩定很多,達到增加鋰硫電池循環壽命的效果。
Sulfonated-polyaniline coated sulfur/graphene composite was successfully prepared using aniline polymerization with sulfur/graphene (SGA), followed by thermal treatment (SGAh), which led to form C-S bonds between polyaniline and sulfur, and finally sulfonated on the polyaniline (SGAhP).The Sulfonated-polyaniline coated sulfur/graphene composite has been characterized with FTIR ane Raman, and the morphology of SGA SGAh, and SGAhP is observed by scanning electron microscopy. From four-point probe measurement, the SGA cathode provides relatively higher conductivity compared to the S cathode. In addition, the X-ray diffraction patterns show that the crystalline changed after thermal treatment.The electrochemical properties are tested using the CR2032 coin cell. The discharge capacity of the SGA cathode (689 mAh/g) is higher than the S cathode (296 mAh/g) under 100 mA/g current density. Furthermore, after 100 cycles, the SGAh enhances the capacity retention to 53.75% (SGA is 23.07%). Moreover, the SO3--coated SGAh (SGAhP) restricts polysulfide and shows the highest capacity retention up to 78.25%.
[1] Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, et al., "Electrochemical energy storage for green grid," Chemical reviews, vol. 111, pp. 3577-3613, 2011.
[2] A. Manthiram, Y. Fu, and Y.-S. Su, "Challenges and prospects of lithium–sulfur batteries," Accounts of chemical research, vol. 46, pp. 1125-1134, 2012.
[3] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, 2001.
[4] P. K. Shen, C.-Y. Wang, S. P. Jiang, X. Sun, and J. Zhang, Electrochemical Energy: Advanced Materials and Technologies: CRC Press, 2015.
[5] G. Pistoia, Battery operated devices and systems: From portable electronics to industrial products: Elsevier, 2008.
[6] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, "Li-O2 and Li-S batteries with high energy storage," Nature materials, vol. 11, pp. 19-29, 2012.
[7] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, "Carbon nanotubes for lithium ion batteries," Energy & Environmental Science, vol. 2, pp. 638-654, 2009.
[8] A. Fedorková, R. Oriňáková, O. Čech, and M. Sedlaříková, "New composite cathode materials for Li/S batteries: A review," Int. J. Electrochem. Sci, vol. 8, pp. 10308-10319, 2013.
[9] Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O'Keefe, "Atomic resolution of lithium ions in LiCoO2," Nature materials, vol. 2, pp. 464-467, 2003.
[10] T. Zhang, D. Li, Z. Tao, and J. Chen, "Understanding electrode materials of rechargeable lithium batteries via DFT calculations," Progress in Natural Science: Materials International, vol. 23, pp. 256-272, 2013.
[11] J. Molenda and M. Molenda, Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System: INTECH Open Access Publisher, 2011.
[12] X. Ji and L. F. Nazar, "Advances in Li–S batteries," Journal of Materials Chemistry, vol. 20, pp. 9821-9826, 2010.
[13] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, "Rechargeable lithium–sulfur batteries," Chemical reviews, vol. 114, pp. 11751-11787, 2014.
[14] M. M. Thackeray, C. Wolverton, and E. D. Isaacs, "Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries," Energy & Environmental Science, vol. 5, pp. 7854-7863, 2012.
[15] W. Lu, J.-B. Baek, and L. Dai, Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications: John Wiley & Sons, 2015.
[16] J. Wang, J. Yang, J. Xie, and N. Xu, "A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries," Advanced Materials, vol. 14, pp. 963-965, 2002.
[17] M. Yu, R. Li, Y. Tong, Y. Li, C. Li, J.-D. Hong, et al., "A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries," Journal of Materials Chemistry A, vol. 3, pp. 9609-9615, 2015.
[18] X. Ji, K. T. Lee, and L. F. Nazar, "A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries," Nature materials, vol. 8, pp. 500-506, 2009.
[19] W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo, and H. c. D. Abruña, "Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries," Journal of the American Chemical Society, vol. 135, pp. 16736-16743, 2013.
[20] R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, et al., "Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries," Nano letters, vol. 13, pp. 4642-4649, 2013.
[21] G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, and J. Geng, "Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries," Nature communications, vol. 7, 2016.
[22] J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, and F. Wei, "Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries," Energy & Environmental Science, vol. 7, pp. 347-353, 2014.
[23] Z. Jin, K. Xie, X. Hong, Z. Hu, and X. Liu, "Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells," Journal of Power Sources, vol. 218, pp. 163-167, 2012.
[24] S. J. Oh, J. K. Lee, and W. Y. Yoon, "Preventing the Dissolution of Lithium Polysulfides in Lithium–Sulfur Cells by using Nafion‐coated Cathodes," ChemSusChem, vol. 7, pp. 2562-2566, 2014.
[25] B. Zhang, X. Qin, G. Li, and X. Gao, "Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres," Energy & Environmental Science, vol. 3, pp. 1531-1537, 2010.
[26] S.-A. Chen and G.-W. Hwang, "Water-soluble self-acid-doped conducting polyaniline: structure and properties," Journal of the American Chemical Society, vol. 117, pp. 10055-10062, 1995.
[27] X. Zhao, J.-K. Kim, H.-J. Ahn, K.-K. Cho, and J.-H. Ahn, "A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries," Electrochimica Acta, vol. 109, pp. 145-152, 2013.
[28] M. Laporta, M. Pegoraro, and L. Zanderighi, "Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity," Physical Chemistry Chemical Physics, vol. 1, pp. 4619-4628, 1999.