簡易檢索 / 詳目顯示

研究生: 黃怡安
Huang, I-an
論文名稱: 磺酸化聚苯胺披覆硫/石墨烯電極之合成與鑑定及其在鋰硫電池之應用
Synthesis and Characterization of Sulfonated-Polyaniline Coated Sulfur/Graphene Applied for Lithium-Sulfur Batteries
指導教授: 郭炳林
L.Kuo, P.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 61
中文關鍵詞: 鋰硫電池聚苯胺石墨烯磺酸化
外文關鍵詞: Li-S batteries, polyaniline, graphene, sulfonation
相關次數: 點閱:119下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先製備硫/石墨烯複材,再以苯胺聚合披覆硫/石墨烯複材表面,形成聚苯胺披覆硫/石墨烯 (SGA),接著藉由熱處理使硫與聚苯胺產生鍵結 (SGAh),最後經由磺酸化反應得到磺酸化聚苯胺披覆硫/石墨烯複合材料 (SGAhP)。於鑑定方面,由IR可知聚苯胺與硫產生鍵結以及磺酸根成功地反應於聚苯胺上,由SEM可看出聚苯胺披覆之後的產物有表面型態改變,由四點探針量測導電度得知,有加入高導電度的石墨烯以及導電高分子聚苯胺的聚苯胺披覆硫/石墨烯複合材料較單純硫正極可以提升超過102倍導電度,最後可由XRD得知熱處理會造成聚苯胺與硫反應,改變硫的結晶性。使用CR2032鈕扣型電池對材料進行電化學測試,SGAhP正極在低放電速率100mA/g下的放電電容量為869 mAh/g,是硫正極放電電容量296 mAh/g的將近3倍。在充放電100圈後,熱處理後的SGA (即SGAh複合材),因為升溫到300oC使聚苯胺與硫反應形成較穩定的結構,電容量還保有53.75%,而進一步在表面用磺酸根修飾的SGAhP正極更可以阻擋Sn2-的遷移,電容量更保有78.25%的高電容量維持率,相較於S的3.72%穩定很多,達到增加鋰硫電池循環壽命的效果。

    Sulfonated-polyaniline coated sulfur/graphene composite was successfully prepared using aniline polymerization with sulfur/graphene (SGA), followed by thermal treatment (SGAh), which led to form C-S bonds between polyaniline and sulfur, and finally sulfonated on the polyaniline (SGAhP).The Sulfonated-polyaniline coated sulfur/graphene composite has been characterized with FTIR ane Raman, and the morphology of SGA SGAh, and SGAhP is observed by scanning electron microscopy. From four-point probe measurement, the SGA cathode provides relatively higher conductivity compared to the S cathode. In addition, the X-ray diffraction patterns show that the crystalline changed after thermal treatment.The electrochemical properties are tested using the CR2032 coin cell. The discharge capacity of the SGA cathode (689 mAh/g) is higher than the S cathode (296 mAh/g) under 100 mA/g current density. Furthermore, after 100 cycles, the SGAh enhances the capacity retention to 53.75% (SGA is 23.07%). Moreover, the SO3--coated SGAh (SGAhP) restricts polysulfide and shows the highest capacity retention up to 78.25%.

    摘要 I Abstract II 致謝 IX 目錄 X 圖目錄 XIV 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 二次電池的發展史 2 1.2.1 鉛酸電池 3 1.2.2 鎳鎘電池 3 1.2.3 鎳氫電池 3 1.2.4 鋰電池簡介 4 1.3 正極材料 6 1.3.1 鋰鈷氧化物 (LiCoO2) 8 1.3.2 鋰猛氧化物 (LiMn2O4) 9 1.3.3 磷酸鋰鐵 (LiFePO4) 10 1.3.4 高電容量之硫正極材料 11 1.4 研究動機 12 第二章 基本理論 14 2.1 鋰離子電池之工作原理 14 2.2 鋰硫電池介紹 15 2.2.1 工作原理 15 2.2.2 技術挑戰 17 2.2.3 改善方法 18 2.3 石墨烯披覆硫電極之製備文獻 19 2.3.1 機械混合合成法 19 2.3.2 熱處理合成法 19 2.3.3 水溶液合成法 20 2.4 磺酸化文獻 20 第三章 實驗 22 3.1 實驗藥品與材料 22 3.2 樣品製備 23 3.2.1 聚苯胺披覆硫/石墨烯之熱處理 23 3.2.2 磺酸化聚苯胺披覆硫/石墨烯之製備 24 3.3 材料性質分析 26 3.3.1 傅立葉轉換紅外線光譜儀 (FT-IR) 26 3.3.2 顯微拉曼光譜儀 (Raman) 26 3.3.3 掃描式電子顯微鏡 (SEM) 27 3.3.4 氮氣等溫吸附/脫附測量 (BET) 27 3.3.5 X光繞射儀 (XRD) 28 3.4 電化學性質測量 29 3.4.1 正極極片之製備 29 3.4.2 鈕扣型電池組裝 29 3.4.3 導電度 (四點探針) 30 3.4.4 交流阻抗分析 (AC Impedance) 31 3.4.5 循環伏安法 (Cyclic Voltammetry) 32 3.4.6 電池放電能力測試 (C-rate Test) 33 3.4.7 電池循環壽命測試 (Cycle-life Test) 33 第四章 結果與討論 34 4.1 SGA、SGAh、SGAhP材料性質分析 34 4.1.1 傅立葉轉換紅外線光譜儀 (FT-IR) 34 4.1.2 顯微拉曼光譜儀 (Raman) 37 4.1.3 掃描式墊子顯微鏡 (SEM) 39 4.1.4 氮氣等溫吸附/脫附測量 (N2 adsorption/desorption isotherms) 41 4.1.5 X光繞射儀 (XRD)晶格鑑定 43 4.2 電化學性質測試 45 4.2.1 循環伏安法 (Cyclic Voltammetry) 45 4.2.2 導電度 (四點探針) 48 4.2.3 交流阻抗分析 (AC Impedance) 48 4.2.4 電池放電能力測試 (C-rate Test) 49 4.2.5 電池循環壽命測試 (Cycle life Test) 53 第五章 結論 57 參考文獻 58

    [1] Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, et al., "Electrochemical energy storage for green grid," Chemical reviews, vol. 111, pp. 3577-3613, 2011.
    [2] A. Manthiram, Y. Fu, and Y.-S. Su, "Challenges and prospects of lithium–sulfur batteries," Accounts of chemical research, vol. 46, pp. 1125-1134, 2012.
    [3] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, 2001.
    [4] P. K. Shen, C.-Y. Wang, S. P. Jiang, X. Sun, and J. Zhang, Electrochemical Energy: Advanced Materials and Technologies: CRC Press, 2015.
    [5] G. Pistoia, Battery operated devices and systems: From portable electronics to industrial products: Elsevier, 2008.
    [6] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, "Li-O2 and Li-S batteries with high energy storage," Nature materials, vol. 11, pp. 19-29, 2012.
    [7] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, "Carbon nanotubes for lithium ion batteries," Energy & Environmental Science, vol. 2, pp. 638-654, 2009.
    [8] A. Fedorková, R. Oriňáková, O. Čech, and M. Sedlaříková, "New composite cathode materials for Li/S batteries: A review," Int. J. Electrochem. Sci, vol. 8, pp. 10308-10319, 2013.
    [9] Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O'Keefe, "Atomic resolution of lithium ions in LiCoO2," Nature materials, vol. 2, pp. 464-467, 2003.
    [10] T. Zhang, D. Li, Z. Tao, and J. Chen, "Understanding electrode materials of rechargeable lithium batteries via DFT calculations," Progress in Natural Science: Materials International, vol. 23, pp. 256-272, 2013.
    [11] J. Molenda and M. Molenda, Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System: INTECH Open Access Publisher, 2011.
    [12] X. Ji and L. F. Nazar, "Advances in Li–S batteries," Journal of Materials Chemistry, vol. 20, pp. 9821-9826, 2010.
    [13] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, and Y.-S. Su, "Rechargeable lithium–sulfur batteries," Chemical reviews, vol. 114, pp. 11751-11787, 2014.
    [14] M. M. Thackeray, C. Wolverton, and E. D. Isaacs, "Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries," Energy & Environmental Science, vol. 5, pp. 7854-7863, 2012.
    [15] W. Lu, J.-B. Baek, and L. Dai, Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications: John Wiley & Sons, 2015.
    [16] J. Wang, J. Yang, J. Xie, and N. Xu, "A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries," Advanced Materials, vol. 14, pp. 963-965, 2002.
    [17] M. Yu, R. Li, Y. Tong, Y. Li, C. Li, J.-D. Hong, et al., "A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries," Journal of Materials Chemistry A, vol. 3, pp. 9609-9615, 2015.
    [18] X. Ji, K. T. Lee, and L. F. Nazar, "A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries," Nature materials, vol. 8, pp. 500-506, 2009.
    [19] W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo, and H. c. D. Abruña, "Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries," Journal of the American Chemical Society, vol. 135, pp. 16736-16743, 2013.
    [20] R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, et al., "Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries," Nano letters, vol. 13, pp. 4642-4649, 2013.
    [21] G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, and J. Geng, "Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries," Nature communications, vol. 7, 2016.
    [22] J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, and F. Wei, "Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries," Energy & Environmental Science, vol. 7, pp. 347-353, 2014.
    [23] Z. Jin, K. Xie, X. Hong, Z. Hu, and X. Liu, "Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells," Journal of Power Sources, vol. 218, pp. 163-167, 2012.
    [24] S. J. Oh, J. K. Lee, and W. Y. Yoon, "Preventing the Dissolution of Lithium Polysulfides in Lithium–Sulfur Cells by using Nafion‐coated Cathodes," ChemSusChem, vol. 7, pp. 2562-2566, 2014.
    [25] B. Zhang, X. Qin, G. Li, and X. Gao, "Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres," Energy & Environmental Science, vol. 3, pp. 1531-1537, 2010.
    [26] S.-A. Chen and G.-W. Hwang, "Water-soluble self-acid-doped conducting polyaniline: structure and properties," Journal of the American Chemical Society, vol. 117, pp. 10055-10062, 1995.
    [27] X. Zhao, J.-K. Kim, H.-J. Ahn, K.-K. Cho, and J.-H. Ahn, "A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries," Electrochimica Acta, vol. 109, pp. 145-152, 2013.
    [28] M. Laporta, M. Pegoraro, and L. Zanderighi, "Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity," Physical Chemistry Chemical Physics, vol. 1, pp. 4619-4628, 1999.

    下載圖示 校內:2021-08-04公開
    校外:2021-08-04公開
    QR CODE