| 研究生: |
莊旻傑 Chuang, Min-Chieh |
|---|---|
| 論文名稱: |
電化學式氯乙烯氣體及蛋白質感測器之研究 Electrochemical Sensors for Vinyl Chloride and Protein |
| 指導教授: |
楊明長
Yang, Ming-Chang 劉炯權 Liu, Chung-Chiun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 219 |
| 中文關鍵詞: | 電化學 、感測器 、氯乙烯 、蛋白質 |
| 外文關鍵詞: | Protein, Vinyl chloride, Sensors, Electrochemical |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包含了電化學式氯乙烯感測器及酪胺酸酵素固定化電極蛋白質感測器兩大主題,並分別於本文第一部份及第二部份中介紹。
電化學式氯乙烯感測器的研究起始於一個含有機電解液的電化學感測裝置,其包含一個多孔性氧化鋁基材,並在其兩面以濺鍍的方式分別製備感測或對電極,以此感測裝置用於探討不同電解液及電極對於氯乙烯氣體感測的適用性,試圖尋找較佳的電解液及電極的組合。其中探討的溶劑包括二氧陸圜,乙腈,甲苯及二甲基甲醯胺的混合液,及二甲亞碸等,並探討不同比例的甲苯及二甲基甲醯胺混合電解液對13~44.5%氯乙烯氣體感測的影響,發現以1:1混合組成的電解液在包括背景電流、感測電流、及靈敏度有較好的適用性。之後以此電解液組成繼續探討包括感測電位、不同助電解質及濃度、氧化鋁基材孔隙度對於0.5~4%氯乙烯各項感測特性影響。在–2.1 V (vs. Ag/Ag+)施加電位下,可得70.9 �A %-1最高靈敏度。
由於電解液及待測氣體中所含水份對此式感測器的干擾,使得此感測器不容易感測低濃度的氯乙烯氣體。針對此問題,本文開發出一種以間接式的感測模式,待測氣體在進入感測裝置之前先經過熱裂解,感測裝置則用於感測熱裂解後產物。此間接式感測模式對於低濃度氣體(0-30 ppm)有很好的靈敏度,文中也針對各種感測變因如施加電位、氣體流速、熱裂解溫度、氧化鋁基材孔隙度等對於感測行為影響作探討。此感測模式具有高靈敏度(6.87 �A ppm-1)及低感測極限(3.8 ppm)。本文亦研究出貢獻電流訊號的待測物為氯化氫氣體。
本文其後又發展以NASICON為固態電解質之氯乙烯感測器用以解決前式感測器長應答時間的問題。此平板式感測器包含了電化學薄膜電極及覆蓋其上的多孔性固態電解質,三種不同組成的NASICON膠用於製備此多孔性固態電解質,並研究其製備出的感測元件對於氯乙烯的感測特性。本文亦探討金與鉑電極的感測特性,及氧氣對此感測的影響。使用第一種組成膠製備出的白金電極感測元件對於20-50ppm的氯乙烯氣體具有8.2�b2.2 nA ppm-1的感測靈敏度及250秒的應答時間。
本文第二部份中闡述一電化學式酪胺酸酵素固定化的蛋白質生化感測器。藉由固定在電極上的酪胺酸酵素催化蛋白質上所含有的酪胺酸成為相對應的醌,之後藉由感測醌來得知蛋白質濃度。本文中採用牛和人的血清白蛋白為典型的蛋白質待測物,用以研究此感測器之感測行為。文中亦探討溫度、酸鹼值、操作電位對此感測器的影響;此感測器的穩定度、可用時間、再現性、及干擾物質的影響也在文中探討。之後並探討此蛋白質感測器用於感測血清中全蛋白的行為,比較此感測方式和目前標準商用分析試劑的優缺點。
This thesis is divided into two parts. A development route toward a practical vinyl chloride gas sensor was exploited in the first part. In the beginning stage, a novel sensing configuration consisting of one porous alumina substrate, two electrodes sputtered on separate sides, and an organic electrolyte, was developed to in-situ analyze gaseous vinyl chloride. Gold and platinum electrodes with several solvents, e.g., 1,4-dioxane aqueous solution, acetonitrile, and toluene/DMF mixtures, were applied to investigate the suitability for the analysis of vinyl chloride in the concentration range of 13~44.5%. The best solvent composition, 50% toluene/50% DMF, was employed for the determination of vinyl chloride with concentration range of 0.5-4%. Several variables, including type of supporting electrolyte, applied potential, concentration of supporting electrolyte, and porosity of alumina substrate were investigated to find the highest sensitivity for vinyl chloride, 70.9 �A %-1, obtained at –2.1 V (vs. Ag/Ag+) in 50% toluene/50% DMF electrolyte containing 10 mM Bu4NClO4 supporting electrolyte. However, the interference of moisture from both the electrolyte and the testing gas were significant and diminished the development of this detector toward a low concentration, less than 1000 ppm.
For this reason, an indirect sensing method was proposed which employed a pre-pyrolysis column followed by an amperometric sensor. A significant sensing ability to the pyrolyzed gas, produced from a pyrolysis of 0-30 ppm vinyl chloride gas, was obtained with a Pt/porous alumina substrate assembly. The sensing current was proportional to the concentration of vinyl chloride. The sensitivity and sensing limit for vinyl chloride were functions of pyrolysis temperature, gas flow rate, and applied potential. The highest sensitivity of 6.87 �A ppm-1 was obtained under the preferable sensing parameters, 400 �aC, 150 ml min-1 and 1.2 V (vs. Ag/AgCl), in which the sensing reaction was controlled by gas diffusion. Effect of porosity of porous alumina substrate on the sensing performances was also studied. The electroactive species in the pyrolyzed gas for sensing was found to be hydrogen chloride vapor.
To overcome the drawback, a long response time, in the indirect sensing mode, an alternative sensing device, based on a NASICON thick-film electrolyte, was developed. Three types of NASICON inks with distinct constituents were prepared for the fabrication of the porous thick-film electrolytes. The physical properties of the porous electrolyte layer, e.g., morphological structure, thickness, adhesion, and XRD spectrum, were studied and found relevant to the composition of the ink. The electrochemical property of the fabricated sensing device with these inks was also investigated. Responding curves of the sensing devices to 20-50 ppm vinyl chloride gas were examined. Effects of electrode material (Pt and Au) and oxygen on the sensing behavior were discussed. Better sensing performances, with a sensitivity of 8.2�b2.2 nA ppm-1 and 250 seconds response time, was obtained on Pt sensing electrode under air atmosphere.
In the second part of this thesis, a simple biosensor, based on a tyrosinase-immobilized electrode, was developed for a rapid and quantitative measurement of bovine serum albumin (BSA) and human serum albumin (HSA). Tyrosinase, immobilized on a screen-printed carbon electrode, catalyzed the oxidation of tyrosine residues present in the albumin to the corresponding quinone, which was further reduced electrochemically by the sensing electrode under an appropriate condition. The concentration of protein, therefore, could be quantified by measuring the reduction current. The operational parameters that affect the performance of this biosensor, e.g., working potential, pH, and temperature, were assessed and optimized. The stability, lifetime, reproducibility, and interference of this biosensor were also evaluated. This biosensor indicated that this method was not only a highly sensitive assay for albumin (2523.1 nA�ml�mg-1 for 0.2-0.5 mg ml-1 BSA) but also a potential tool for the measurement of total protein in human serum.
References
Part I
1. R. F. Taylor and J. S. Schultz, Handbook of chemical and biological sensors, IOP Publishing Ltd, Philadelphia, p557 (1996).
2. S. M. Sze, Semiconductor sensors, Wiley-Interscience, New York (1994).
3. J. Fraden, AIP handbook of modern sensors, American Institute of Physics, New York (1993).
4. A. Mandelis and C. Christofides, Physics, chemistry, and technology of solid state gas sensor devices, John Wiley & Sons, Inc., New York (1993).
5. L. Y. Kupriyanov, Semiconductor sensors in physico-chemical studies, Elsevier, New York (1996).
6. P. T. Moseley, New trends and future prospects of thick- and thin-film gas sensors, Sensors and Actuators B: Chemical, 3, 167-174 (1991).
7. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, A new detector for gaseous components using semiconductive think films, Analytical Chemistry, 34, 1502-1503 (1962).
8. N. Taguchi, Japanese Patent S45-38200 (1962).
9. B. Hoffheins, Handbook of chemical and biological sensors (R. F. Taylor and J. S. Schultz Ed.), IOP Publishing Ltd, Philadelphia, p372 (1996).
10. B. Hoffheins, Handbook of chemical and biological sensors (R. F. Taylor and J. S. Schultz Ed.), IOP Publishing Ltd, Philadelphia, p376 (1996).
11. W. H. King, Piezoelectric sorption detector, Analytical Chemistry, 36, 1735-1739, (1964).
12. A. A. Suleiman and G. G. Guilbault, Handbook of chemical and biological sensors (R. F. Taylor and J. S. Schultz Ed.), IOP Publishing Ltd, Philadelphia, p484 (1996).
13. A. A. Suleiman and G. G. Guilbault, Handbook of chemical and biological sensors (R. F. Taylor and J. S. Schultz Ed.), IOP Publishing Ltd, Philadelphia, p485 (1996).
14. L. B. Kreuzer, Optoacoustic spectroscopy and detection (Y. H. Pao, Ed.), Chpater 1, Academic Press, New York (1977).
15. A. C. Tam, Ultrasensitive laser spectroscopy (D. S. Kliger, Ed.) Chapter 1, Academic Press, New York (1983).
16. M. W. Sigrist, Principles and perspectives of photothermal and photoacoustic phenomena (A. Mandelis, Ed.), Chapter 7, Elsevier, New York (1992).
17. A. Mandelis and C. Christofides, Physics, chemistry, and technology of solid state gas sensor devices, John Wiley & Sons, Inc., New York, p165 (1993).
18. A. J. Bard and L. R. Faulkner, Electrochemical method fundamentals and applications, John Wiley & Sons, Inc., New York (2001).
19. J. Wang, Analytical electrochemistry, Wiley-VCH, New York (2000).
20. P. Kissinger and W. Heineman, Laboratory techniques in electroanalytical chemistry, Dekker, New York (1996).
21. J. Wang, Handbook of chemical and biological sensors (R. F. Taylor and J. S. Schultz Ed.), Chapter 5, IOP Publishing Ltd, Philadelphia (1996).
22. J. R. Stetter, W. R. Penrose, and S. Yao, Sensors, chemical sensors, electrochemical sensors, and ECS, Journal of The Electrochemical Society, 150, S11-S16 (2003).
23. R. I. Stefan, J. F. van Staden, H. Y. Aboul-Enein, Electrochemical Sensors in Bioanalysis, Marcel Dekker (2001).
24. S. Yao, S. Hosohara, Y. Shimizu, N. Miura, H. Futata, N. Yamazoe, Solid electrolyte CO2 sensor using Nasicon and Li-based binary carbonate electrode, Chemical Letters, 2069-2072 (1991).
25. C. C. Liu and M. R. Neuman, Diabetes Care, 5, 275-277 (1982).
26. D. A. Shoog, F. J. Holler, T. A. Nieman, Principles of instrumental analysis, 5th Ed., Harcourt Brace & Company, Orlando, Florida (1998).
27. A. Szczurek, P. M. Szecowka, B. W. Licznerski, Application of sensor array and neural networks for quantification of organic solvent vopours in air, Sensors and Actuators B: Chemical, 58, 427-432 (1999).
28. A. Teeramongkonrasmee, and M. Sriyudthsak, Methanol and ammonia sensing characteristics of sol–gel derived thin film gas sensor, Sensors and Actuators B: Chemical, 66, 256-259 (2000).
29. D. Wang, L. Ma, G. Zhao, Z. Tang, C. H. Chan, K. O. Sin, L. Y. Sheng, Gas chromatographic study on adsorption selectivity of tin dioxide gas sensor to organic vapors, Sensors and Actuators B: Chemical, 66, 156-158 (2000).
30. T. Takada, T. Fukunaga, T. Maekawa, New method for gas identification using a single semiconductor sensor, Sensors and Actuators B: Chemical, 66, 22-24 (2000).
31. A. Fort, M. Gregorkiewitz, N. Machetti, S. Rocchi, B. Serrano, L. Tondi, N. Ulivieri, V. Vignoli, Selectivity enhancement of SnO2 sensors by means of operating temperature modulation, Thin Solid Film, 418, 2-8 (2002).
32. X. Wang, W. P. Carey, S. S. Yee, Monolithic thin-film metal-oxide gas-sensor arrays with application to monitoring of organic vapors, Sensors and Actuators B: Chemical, 28, 63-70 (1995).
33. S. Zampolli, I. Elmi, F. Ahmed, M. Passini, G. C. Cardinali, S. Nicoletti, L. Dori, An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications, Sensors and Actuators B: Chemical, 101, 39-46 (2004).
34. G. Sberveglieri, E. Comini, G. Faglia, M. Z. Atashbar, W. Wlodarski, Titanium dioxide thin films prepared for alcohol microsensor applications, Sensors and Actuators B: Chemical, 66, 139-141 (2000).
35. I. Hayakawa, Y. Iwamoto, K. Kikuta, S. Hirano, Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor, Sensors and Actuators B: Chemical, 62, 55-60 (2000).
36. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, TiO2 thin films by a novel sol–gel processing for gas sensor applications, Sensors and Actuators B: Chemical, 68, 189-196 (2000).
37. L. R. Skubal, N. K. Meshkov, M. C. Vogt, Detection and identification of gaseous organics using a TiO2 sensor, Journal of Photochemistry and Photobiology A: Chemistry, 148, 103-108 (2002).
38. J. E. G. de Souza, F. L. dos Santos, B. B. Neto, C. G. dos Santos, M. V. B. dos Santos, C. P. de Melo, Free-grown polypyrrole thin films as aroma sensors, Sensors and Actuators B: Chemical, 88, 246-259 (2003).
39. C. Fietzek, K. Bodenhöfer, M. Hees, P. Haisch, M. Hanack, W. Göpel, Soluble phthalocyanines as suitable coatings for highly sensitive gas phase VOC-detection, Sensors and Actuators B: Chemical, 65, 85-87 (2000).
40. R. de Saja, J. Souto, M. L. Rodríguez-Méndez, Array of lutetium bisphthalocyanine sensors for the detection of trimethylamine, Material Science and Enginerring C, 8-9, 565-568 (1999).
41. A. D’Amico, C. Di Natale, R. Paolesse, A. Macagnano, A. Mantini, Metalloporphyrins as basic material for volatile sensitive sensors, Sensors and Actuators B: Chemical, 65, 209-215 (2000).
42. B. P. J. de Lacy Costello, R. J. Ewen, N. M. Ratcliffe, P. S. Sivanand, Thick film organic vapour sensors based on binary mixtures of metal oxides, Sensors and Actuators B: Chemical, 92, 159-166 (2003).
43. S. Capone, P. Siciliano, F. Quaranta, R. Rella, M. Epifani, L. Vasanelli, Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array, Sensors and Actuators B: Chemical, 69, 230-235 (2000).
44. J. Gutiérrez, M. C. Horrillo, J. Getino, J. I. Robla, L. Arés, C. García, Measurements of VOCs in soils through a tin oxide multisensor system, Sensors and Actuators B: Chemical, 43, 193-199 (1997).
45. J. Gutiérrez, J. Getino, M. C. Horrillo, L. Arés, J. I. Robla, C. García, I. Sayago, Analysis of VOCs with a tin oxide sensor array, Sensors and Actuators B: Chemical, 45, 200-205 (1997).
46. E. Llobet, J. Brezmes, X. Vilanova, X. Correig, J. E. Sueiras, Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array, Sensors and Actuators B: Chemical, 41, 13-21 (1997).
47. D. S. Lee, T. Y. Kim, J. S. Huh, D. D. Lee, Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition, Thin Solid Film, 416, 271-278 (2002).
48. D. S. Lee, J. K. Jung, J. W. Lim, J. S. Huh, D. D. Lee, Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis, Sensors and Actuators B: Chemical, 77, 228-236 (2001).
49. M. E. H. Amrani, R. M. Dowdeswell, P. A. Payne, K. C. Persaud, An intelligent gas sensing system, Sensors and Actuators B: Chemical, 44, 512-516 (1997).
50. J. Feng, A. G. MacDiarmid, Sensors using octaaniline for volatile organic compounds, Synthetic Metals, 102, 1304-1305 (1999).
51. A. Mandelis and C. Christofides, Physics, chemistry, and technology of solid state gas sensor devices, Chapter 8, John Wiley & Sons, Inc., New York (1993).
52. G. Barkó, J. Hlavay, Application of an artificial neural network (ANN) and piezoelectric chemical sensor array for identification of volatile organic compounds, Talanta, 44, 2237-2245 (1997).
53. K. Bodenhöfer, A. Hierlemann, R. Schlunk, W. Göpel, New method of vaporising volatile organics for gas tests, Sensors and Actuators B: Chemical, 45, 259-264 (1997).
54. K. Nakamura, T. Nakamoto, T. Moriizumi, Classification and evaluation of sensing films for QCM odor sensors by steady-state sensor response measurement, Sensors and Actuators B: Chemical, 69, 295-301 (2000).
55. R. Ni, X. B. Zhang, W. Liu, G. L. Shen, R. Q. Yu, Piezoelectric quartz crystal sensor array with optimized oscillator circuit for analysis of organic vapors mixtures, Sensors and Actuators B: Chemical, 88, 198-204 (2003).
56. R. Polikar, R. Shinar, L. Udpa, M. D. Porter, Artificial intelligence methods for selection of an optimized sensor array for identification of volatile organic compounds, Sensors and Actuators B: Chemical, 80, 243-254 (2001).
57. E. T. Zellers, M. Han, Effects of Temperature and Humidity on the Performance of Polymer-Coated Surface Acoustic Wave Vapor Sensor Arrays, Analytical Chemistry, 68, 2409-2418 (1996).
58. J. Wagner, M. von Schickfus, Inductively coupled, polymer coated surface acoustic wave sensor for organic vapors, Sensors and Actuators B: Chemical, 76, 58-63 (2001).
59. H. B. Lin, J. S. Shih, Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors, Sensors and Actuators B: Chemical, 92, 243-254 (2003).
60. M. Penza, F. Antolini, M. V. Antisari, Carbon nanotubes as SAW chemical sensors materials, Sensors and Actuators B: Chemical, 100, 47-59 (2004).
61. T. Wessa, S. Küppers, M. Rapp, J. Reibel, Validation of an industrial analytical sensor procedure realized with a SAW-based sensor system, Sensors and Actuators B: Chemical, 70, 203-213 (2000).
62. H. Hoff and J. Bargon, A vibrating optical fiber tip as a new sensor to monitor organic vapors, Sensors and Actuators B: Chemical, 67, 29-35 (2000).
63. C. Bariáin, I. R. Matías, I. Romeo, J. Garrido, L. Mariano, Behavioral experimental studies of a novel vapochromic material towards development of optical fiber organic compounds sensor, Sensors and Actuators B: Chemical, 76, 25-31 (2001).
64. C. Bariáin, I. R. Matías, C. Fernández-Valdivielso, F. J. Arregui, M. L. Rodríguez-Méndez, J. A. de Saja, Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths, Sensors and Actuators B: Chemical, 93, 153-158 (2003).
65. G. A. Bakken, G. W. Kauffman, P. C. Jurs, K. J. Albert, S. S. Stitzel, Pattern recognition analysis of optical sensor array data to detect nitroaromatic compound vapors, Sensors and Actuators B: Chemical, 79, 1-10 (2001).
66. L. R. Jordan, P. C. Hauser, G. A. Dawson, Amperometric sensor for monitoring ethylene, Analytical Chemistry, 69, 558-562 (1997).
67. T. Ishiji and K. Takahashi, Selective detection of acetylene gas extracted from isolation oil by an electrochemical sensor using a gold electrode, Journal of Applied Electrochemistry, 23, 771-774 (1993).
68. L. R. Jordan and P. C. Hauser, Electrochemical sensor for acetylene, Analytical chemistry, 69, 2669-2672 (1997).
69. R. Knake, P. Jacquinot and P. C. Hauser, Amperometric detection of gaseous formaldehyde in the ppb range, Electroanalysis, 13, 631-634 (2001).
70. K. C. Kim, S. M. Cho, H. G. Choi, Detection of ethanol gas concentration by fuel cell sensors fabricated using a solid polymer electrolyte, Sensors and Actuators B: Chemical, 67, 194-198 (2000).
71. Y. Eguchi, S. Watanabe, N. Kubota, T. Takeuchi, T. Ishihara, Y. Takita, A limiting current type sensor for hydrocarbons, Sensors and Actuators B: Chemical, 66, 9-11 (2000).
72. J. R. Stetter, S. Zaromb, and M. W. Findlay, Jr., Monitoring of electrochemically inactive compounds by amperometric gas sensor, Sensors and Actuators B: Chemical, 6, 269-288 (1984).
73. T. Otagawa and J. R. Stetter, A chemical concentration modulation sensor for selective detection of airborne chemicals, Sensors and Actuators B: Chemical, 11, 251-264 (1987).
74. J. R. Stetter, M. W. Findlay, and G. J. Maclay, Sensors array and catalytic filament for chemical analysis of vapors and mixtures, Sensors and Actuators B: Chemical, B1, 43-47 (1990).
75. S. Vaihinger, W. Gopel, and J. R. Stetter, Detection of halogenated and other hydrocarbons in air: response functions of catalyst/electrochemical sensor systems, Sensors and Actuators B: Chemical, 4, 337-343 (1991).
76. J. Unwin and P. T. Walsh, An exposure monitor for chlorinated hydrocarbons based on conductometry using lead phthalocyanine films, Sensors and Actuators B: Chemical, 18, 45-57 (1989).
77. F. Josse, R. Lukas, R. Zhou, S. Schneider, D. Everhart, AC-impedance-based chemical sensors for organic solvent vapors, Sensors and Actuators B: Chemical, 35-36, 363-369 (1995).
78. Scientific and technical assessment report on vinyl chloride and polyvinyl chloride, U.S. Environmental Protection Agency, Research Triangle Park, NC, p6 (1975).
79. Material Safety Data Sheet, CAS #75-01-4.
80. Scientific and technical assessment report on vinyl chloride and polyvinyl chloride, U.S. Environmental Protection Agency, Research Triangle Park, NC, p3 (1975).
81. H. Lund, M. M. Baizer, Organic electrochemistry, an introduction and a guide, Marcel Dekker, Inc., New York, p369 (1991).
82. D. K. Kyriacou, Modern electroorganic chemistry, Springer-Verlag, New York, p122 (1994).
83. S. A. Vitale, K. Hadidi, D. R. Cohn, L. Bromberg, Evaluation of the reaction rate constants for chlorinated ethylene and ethane decomposition in attachment-dominated atmospheric pressure dry-air plasmas, Physics Letters A, 232, 447-455 (1997).
84. M. C. Helvenston, C. E. Castro, Nickel(I) octacthylisobacteriochlorin anion. An exceptional nucleophile. Reduction and coupling of alkyl halides by anionic and radical processes. A model for factor F-430. Journal of the American Chemical Society, 114, 8490-8496 (1992).
85. R. R. G. D. Keenan and M. Southfield, Private communication with F. P. Scaringelli, U.S. Environmental Protection Agency, Research Triangle Park, NC (1974).
86. O. L. Hollis and W. V. Hayes, Gas-liquid chromatographic analysis of chlorinated hydrocarbons with capillary columns and ionization detectors, Analytical Chemistry, 34, 1223-1226 (1962).
87. O. V. Meshkova, V. N. Dmitrieva, V. D. Bezuglyi, Polarographic analysis of waste waters from poly (vinyl chloride) production, Chem. Ab. 75:21063m.
88. M. Ono, K. Shimanoe, N. Miura, N. Yamazoe, Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment, Solid State Ionics, 136-137, 583-588 (2000).
89. T. Kida, Y. Miyachi, K. Shimanoe, N. Yamazoe, NASICON thick film-based CO2 sensor prepared by a sol-gel method, Sensors and Actuators B: Chemical, 80, 28-32 (2001).
90. M. Prudenziati, Thick film sensors, Elsevier, New York (1994).
91. R. E. Cote and R. J. Bouchard, Electronic ceramics: properties, devices and application (L. M. Levinson Ed.), Marcel Dekker, Inc., New York (1988).
92. M. J. Madou, Fundamentals of microfabrication, CRC Press, Boca Raton (2002).
93. J. W. Gardner, Microsensors: principle and application, John Wiley & Sons, New York (1994).
94. S. B. Yu, Q. H. Wu, T.-A. Massood, C. C. Liu, Development of a silicon-based yttria-stabilized-zirconic (YSZ) amperometric oxygen sensor, Sensors and Actuators B: Chemical, 85, 212-218 (2002).
95. D. T. Sawyer, A. Sobkowiak, J. L. Roberts, Jr., Electrochemistry for Chemists, 2nd Ed., Chapter 7, John Wiley & Sons, Inc., New York (1995).
96. H. Lund, M. M. Baizer, Organic electrochemistry, an introduction and a guide, Chapter II, Marcel Dekker, Inc., New York (1991).
97. G. Alberti and M. Casciola, Solid state protonic conductors, present main applications and future prospects, Solid State Ionics 145, 3-16 (2001).
98. J. Köhler, N. Imanaka, G.-y Adachi, Multivalent cationic conduction in crystalline solids, Chemical Material, 10, 3790-3812 (1998).
99. C. E. W. Hahn, H. McPark, A. M. Bond, The development of new microelectrode gas sensor: an odyssey. Part 2 O2 and CO2 reduction at membrane-covered gold microdisk electrodes, Journal of Electroanalytical Chemistry, 393, 69-74 (1995).
100. C. E. W. Hahn, H. McPark, A. M. Bond, D. Clark, The development of new microelectrode gas sensor: an odyssey. Part 1 O2 and CO2 reduction at unshielded gold microdisk electrodes, Journal of Electroanalytical Chemistry, 393, 61-68 (1995).
101. H. McPark, A. M. Bond, C. E. W. Hahn, The development of new microelectrode gas sensor: an odyssey. Part IV O2, CO2 and N2O reduction at unshielded gold microdisk electrodes, Journal of Electroanalytical Chemistry, 487, 25-30 (2000).
102. N. Yamazoe and N. Miura, Propect and problems of solid electrolyte-based oxygenic gas sensors, Solid State Ionics, 86-88, 987-993 (1996).
103. P. T. Moseley, Solid state gas sensors, Measurement Science and technology, 8, 223-237 (1997).
104. A. Dubbe, Fundamentals of solid state ionic micro gas sensors, Sensors and Actuators B: Chemical, 88, 138-148 (2003).
105. R. S. Gordon, G.. R. Miller, B. J. Mcentire, E. D. Beck, J. R. Rasmussen, Fabrication and characterization of Nasicon electrolyte, Solid State Ionics, 3/4, 243-248 (1981).
106. H. Perthuis, Ph. Colomban, Well densified Nasicon type ceramics, elaborated using sol-gel process and sintering at low temperature, Material Research Bulletin, 19, 621-631 (1984).
107. H. Perthuis, Ph. Colomban, Sol-gel routes leading to Nasicon ceramics, Ceramics International, 12, 39-52 (1986).
108. A. Ahmad, T. A. Wheat, A. K. Kuriakose, J. D. Canaday, A. G. Mcdonald, Dependence of the properties of Nasicons on their composition and processing, Solid State Ionics, 24, 89-97 (1987).
109. T. Maruyama, Y. Saito, Y. Matsumoto, Y. Yano, Potentiometric sensor for sulfur oxides using Nasicon as a solid electrolyte, Solid State Ionics, 17, 281-286 (1985).
110. N. Miura, M. Iio, G. Lu, N. Yamazoe, Sodium ion conductor based sensor attached with NaNO2 for amperometric detection of NO2, Journal of The Electrochemical Society, 143, L241-243 (1996).
111. Y. Yang, C.-C. Liu, Development of a Nasicon-based amperometric carbon dioxide sensor, Sensors and Actuators B: Chemical, 62, 30-34 (2000).
112. J.-S. Lee, J.-H. Lee, S.-H. Hong, Nasicon-based amperometric CO2 sensor using Na2CO3-BaCO3 auxiliary phase, Sensors and Actuators B: Chemical, 96, 663-668 (2003).
113. Y. Saito and T. Maruyama, Recent developments of the sensors for carbon oxides using solid electrolytes, Solid State Ionics, 28-30, 1644-1647 (1988).
114. N. Miura, S. Yao, Y. Shimizu, N. Yamazoe, Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode, Journal of The Electrochemical Society, 139, 1384-1388 (1992).
115. R. Izquierdo, F. Hanus, Th. Lang, D. Ivanov, M. Meunier, L. Laude, J. F. Currie, A. Yelon, Pulsed laser deposition of NASICON thin films, Applied Surface Science, 96-98, 855-858 (1996).
116. Th. Lang, M. Caron, R. Izquierdo, D. Ivanov, J. F. Currie, A. Yelon, Material characterization of sputtered sodium-ion conductive ceramics for a prototype CO2 micro-sesnor, Sensors and Actuators B: Chemical, 31, 9-12 (1996).
117. M. Meunier, R. Izquierdo, L. Hasnaoui, E. Quenneville, D. Ivanov, F. Girard, F. Morin, A. Yelon, M. Paleologou, Pulsed laser deposition of superionic ceramic thin films: deposition and applications in electrochemistry, Applied Surface Science, 127-129, 466-470 (1998).
118. A. Ahmad, C. Glasgow, T. A. Wheat, Sol-gel processing of NASICON thin-film precursors, Solid State Ionics, 76, 143-154 (1995).
119. Y. L. Huang, A. Caneiro, M. Attari, P. Fabry, Preparation of NASICON thin films by dip-coating on Si/SiO2 wafer and corresponding C-V measurements, Thin Solid Film, 196, 283-294 (1991).
120. J. Li, Analysis and forecast of vinyl chloride market, Modern Chemical Industry, 20, 42-44 (2000).
121. T. M. Florence and Y. J. Farrar, Spectrophotometric determination of chloride at the parts-per-billion level by the mercury(II) thiocyanate method, Analytica Chimica Acta, 54, 373-377 (1971).
122. L. L. Miller and E. Riekena, The electrochemical reduction of vinyl bromides, The Journal of Organic Chemistry, 34 3359-3362 (1969).
123. D. R. Lide (Ed.), Handbook of Chemistry and Physics, 75th ed., CRC Press, London, 1994-1995.
124. M. F. Bento, M. D. Geraldo and M. I. Montenegro, Effect of the medium composition on the current of steady state voltammograms of neutral and charged species in dimethylformamide/toluene mixture, Analytica Chimica Acta, 385, 365-371 (1999).
125. H. Lund, M. M. Baizer, Organic electrochemistry, an introduction and a guide, Marcel Dekker, Inc., New York, p296 (1991).
126. D. T. Sawyer, A. Sobkowiak, J. L. Roberts, Jr., Electrochemistry for Chemists, John Wiley & Sons, Inc., New York, p314 (1995).
127. D. M. L. Perriere, W. F. Carroll, Jr., B. C. Willett, E. C. Torp, D. G. Peters, Radicals and carbanions as intermediates in the electrochemical reduction of 1-iododecane at mercury, effect of potential, electrolysis time, and water concentration on the mechanism, Journal of the American Chemical Society, 101, 7561-7568 (1979).
128. M. E. Rosa-Montañez, H. De Jesús-Cardona, C. R. Cabrera, Experimental setup for the study of oxygen- and water-sensitive electrochemical systems, Electrochimica Acta, 42, 1839-1846 (1997).
129. J. J. Baschuk and X. Li, Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, Journal of Power Sources, 86, 181-196 (2000).
130. T. Otagawa, S. Zaromb, J. R. Stetter, Electrochemical oxidation of methane in nonaqueous electrolyte at room temperature, Journal of the Electrochemical Society, 132, 2951-2957 (1985).
131. D. R. Lide (ed.), Handbook of Chemistry and Physics, 75th Ed., CRC Press, p8-22 (1995).
132. D. J. Eames, J. Newman, Electrochemical conversion of anhydrous HCl to Cl2 using a solid-polymer-electrolyte electrolysis cell, Journal of the Electrochemical Society, 142, 3619-3625 (1995).
133. L. Wang and R. V. Kumar, Thick film CO2 sensors based on NASICON solid electrolyte, Solid State Ionics, 158, 309-315 (2003).
134. L. Montanaro and A. Tersalvi, Set up of a screen-printing procedure for the production of a � alumina-based gas sensor, Journal of Electroceramics, 5, 253-259 (2000).
135. N. Guillet, R. Lalauze, J. P. Viricelle, C. Pijolat, L. Montanaro, Development of a gas sensor by thick film technology for automotive applications: choice of materials-realization of a prototype, Materials Science and Engineering C, 21, 97-103 (2002).
Part II
1. F. W. Scheller and U. Wollenberger, Encyclopedia of Electrochemistry, Volume 9 Bioelectrochemistry (G. S. Wilson Ed.), Wiley-VCH, Weinheim, p435 (2002).
2. B. R. Eggins, Chemical sensors and biosensors, John Wiley & Sons, Ltd, Chichester, p103 (2002).
3. F. W. Scheller and U. Wollenberger, Encyclopedia of Electrochemistry, Volume 9 Bioelectrochemistry (G. S. Wilson Ed.), Wiley-VCH, Weinheim, p442 (2002).
4. F. W. Scheller and U. Wollenberger, Encyclopedia of Electrochemistry, Volume 9 Bioelectrochemistry (G. S. Wilson Ed.), Wiley-VCH, Weinheim, p449 (2002).
5. E. Layne, Methods in Enzymology, Vol III (S. P. Colowick and N. O. Kaplan Ed.) Academic Press, New York, p447 (1957).
6. O. H. Lowry and N. J. Rosebrough, A. L. Farr, R. J. Randall, Protein measurement with the Folin-Phenol reagents, Journal of Biological Chemistry, 193, 265-275 (1951).
7. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248-254 (1976).
8. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, D. C. Klenk, Measurement of protein using bicinchoninic acid, Analytical Biochemistry, 150, 76-85 (1985).
9. G. Mertens, L. Muylle, A microtiter plate method for total protein determination to screen plasma donors, Transfusion, 35, 968-969 (1995).
10. C. V. Sapan, R. L. Lundblad, N. C. Price, Colourimetric protein assay techniques, Biotechnology and Applied Biochemistry, 29, 99-108 (1999).
11. A. Ten, M. Pamblanco, Total nitrogen and protein content determination in colostrums and mature human milk by different methods, Nutr. Rep. Int., 34, 645-650 (1986).
12. K. Kojima, A. Hiratsuka, H. Suzuki, K. Yano, K. Ikebukuro, I. Kaurbe, Analytical Chemistry, 75, 1116-1122 (2003).
13. J. S. Ahn, S. Choi, S. H. Jang, H. J. Chang, J. H. Kim, K. B. Nahm, S. W. Oh, E. Y. Choi, Development of a point-of-care assay system for high-sensitivity C-reactive protein in whole blood, Clinica Chimica Acta, 332, 51-59 (2003).
14. M. Muratsugu, F. Ohta, Y. Miya, T. Hosokawa, S. Kurosawa, N. Kamo, H. Ikeda, Quartz Crystal Microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed, Analytical Chemistry, 65, 2933-2937 (1993).
15. S. Koch, P. Woias, L. K. Meixner, S. Drost, H. Wolf, Protein detection with a novel ISFET-based zeta potential analyzer, Biosensors & Bioelectronics, 14, 413-421 (1999).
16. J. C. T. Eijkel, W. Olthuis, P. Bergveld, An ISFET-based dipstick device for protein detection using the ion-step method, Biosensors & Bioelectronics, 12, 991-1001 (1997).
17. X. Song, B. Swanson, Direct ultrasensitive, and selective optical detection of protein toxins using multivalent interactions, Analytical Chemistry, 71, 2097-2107 (1999).
18. S. J. Setford, S. F. White, J. A. Bolbot, Measurement of protein using an electrochemical bi-enzyme sensor, Biosensors & Bioelectronics, 17, 79-86 (2002).
19. W. Lu, T. A. Nguyen, G. G. Wallace, Protein detection using conducting polymer microarrays, Electroananlysis, 10, 1101-1107 (1998).
20. J. N. Barisci, D. Hughes, A. Minett, G. G. Wallace, Characterization and analytical use of a polypyrrole electrode containing anti-human serum albumin, Analytica Chimica Acta, 371, 39-48 (1998).
21. W. Lu, G. G. Wallace, A. A. Karayakin, Use of prussian blue/conducting polymer modified electrodes for the detection of cytochrome C, Electroanalysis, 10, 472-476 (1998).
22. Y. S. Fung and S. Y. Mo, Determination of amino acids and proteins by dual-electrode detection in a flow system, Analytical Chemistry, 67, 1121-1124 (1995).
23. P. Sarkar and A. P. F. Turner, Application of dual-step potential on single screen-printed modified carbon paste electrodes for detection of amino acids and proteins, Fresenius Journal of Analytical Chemistry, 364, 154-159 (1999).
24. H. Ukeda, E. Miyazaki, K. Matsumoto, Y. Osajima, Application of glutaraldehyde to amperometric determination of protein in dairy products, Analytical Chemistry, 58, 2975-2978 (1986).
25. A. Schwarz, O. Bagel, H. H. Girault, A selective electrochemical protein quantification method, Electroanalysis, 12, 811-815 (2000).
26. A. S. Perez and J. E. F. de Frutos, Study of the catalytic polarographic reduction of Ni(II) in the presence of albumin, immunoglobulins and serum proteins, Determination of total proteins in serum, Analytica Chimica Acta, 317, 319-325 (1995).
27. F. Karbassi, K. Haghbeen, A. A. Saboury, B. Ranjbar, A. A. Moosavi-Movahedi, Activity, structural and stability changes of mushroom tyrosinase by sodium dodecyl sulfate, Colloids and Surfaces B: Biointerfaces 32, 137-143 (2003).
28. L. G. Fenoll, J. N. Rodriguez-Lopez, F. Garcia-Molina, F. Garcia-Canovas, J. Tudela, Michaelis constants of mushroom tyrosinase with respect to oxygen in the presence of monophenols and diphenols, The International Journal of Biochemistry & Cell Biology, 34, 332-336 (2002).
29. M. Jimenez and F. Garcia-Carmona, The effect of sodium dodecyl sulphate on polyphenol oxidase, Phytochemistry, 42, 1503-1509 (1996).
30. K. Zachariah and H. A. Mottola, Continuous-flow determination of phenol with chemically immobilized polyphenol oxidase (tyrosinase), Analytical Letters, 22, 1145-1158 (1989).
31. J. Wang and Q. Chen, Microfabricated phenol biosensors based on screen printing of tyrosinase containing carbon ink, Analytical Letters, 28, 1131-1142 (1995).
32. H. Kotte, B. Grundig, K. D. Vorlop, B. Strehlitz, U. Stottmeister, Methylphenazonium-modified enzyme sensor based on polymer thick films for subnanomolar detection of phenols, Analytical Chemistry, 67, 65-70 (1995).
33. J. C. Schmidt, Enzyme-based electrodes for environmental monitoring applications, Field Analytical Chemistry and Technology, 2, 351-361 (1998).
34. G. Wang, J. J. Xu, L. H. Ye, J. J. Zhu, H. Y. Chen, Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds, Bioelectrochemistry, 57, 33-38 (2002).
35. J. L. Kee, Laboratory and Diagnostic Tests with Nursing Implications, 6th Ed., Pearson Education Inc., New Jersey, p363 (2002).
36. D. S. Jacobs, Laboratory Test Handbook, 3rd Ed., Lexi-Comp Inc., Hudson, p340 (1992).