| 研究生: |
江榮華 Jiang, Ronh-Hua |
|---|---|
| 論文名稱: |
微銑削刀具疲勞斷裂之探討 Investigation on Tool Fatigue Fracture in Micro-End Milling |
| 指導教授: |
王俊志
Wng, Jiunn-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 微銑削 、疲勞壽命 、疲勞失效週期數 、最大應力模式 、多諧和應力模式 |
| 外文關鍵詞: | micro milling, cycle fatigue, fatigue life, maximum stress mode, multi-harmonic stress mode |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討在微銑削製程中不同每刃進給、徑向切深與軸向切深之銑削負載對微刀具疲勞壽命之影響。實驗結果顯示影響刀具疲勞壽命以徑向切深最大,其次是每刃進給,然而隨著軸向切深越小造成工件表面精度越差其振動量越大,軸向切深越小刀具撓曲之影響越大使得壽命越短。本文以一般疲勞失效模式為基礎提出兩種微銑削刀具疲勞失效預測模式,其模式一為最大應力模式,模式二為多諧和應力模式。結果可知多諧和應力模式之準確率為85%,最大應力模式之準確率為80%。模式二由於考慮各項諧和應力對刀具疲勞壽命之影響故預測疲勞失效週期數較高於最大應力模式,並且可得到第一諧和應力影響刀具疲勞壽命之權重明顯大於平均應力與其它各高頻諧和應力。
This study investigated the influence of cutting load and tool fatigue life in different feed per tooth, radial depth of cut and axial depth of cut in micro-milling. The experimental results showed the radial depth of cut affect tool fatigue life most, and the second is feed per tooth. However, the smaller axial depth of cut caused the surface accuracy become worse and made large vibration. The smaller axial depth of cut caused serious cutter deflection and the tool life became shorter. Two micro-milling tool fatigue failure prediction models based on the normal fatigue failure model. The first is the maximum stress mode, and the second is multi-harmonic stress for the mode. The results show that the accuracy rate of multi-harmonic stress mode is 85 % , the accuracy rate of maximum stress mode is 80 %. Because of considering the affect of several harmonic stress on tool fatigue life in mode 2 , the cycle of fatigue prediction is more than maximum stress mode, and it could also get the first harmonic stress which average weight affect the fatigue life was significantly greater than the higher frequency of harmonic stress.
Afazov, S. M., Ratchev, S. M. and Segal, J., (2010), " Modelling and simulation of micro-milling cutting forces, " Journal of Materials Processing Technology, Vol. 210, pp. 2154-2164.
Aoki, I. and Takahashi, T., (1999), " Micropattern fabrication by specially designed micro Tool, " Proceedings of the SPIE Conference on Micromachining and Microfabrication, Vol. 3874, pp. 347-355.
Bao, W. Y. and Tansel, I. N., (2000), " Modeling Micro-End-Milling Operations, Part I: Analytical Cutting Force Model, " International Journal of Machine Tool & Manufacture, Vol. 40, No. 15, pp. 2155~2174.
Bartosiewicz, L., Krause, A. R., Kovacs, B. and Putatunda, S. K., (1992), " Fatigue Crack Growth Behavior of Austempered Ductile Cast Iron, " AFS Transactions, Vol. 130, pp. 135-142.
Budak, E., Altintas, Y. and Armarego, E. J. A., (1998), " Prediction of Milling Force Coefficients From Orthogonal cutting Data, " ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.
Chiou, Y. C. and Yip, M. C., (2003) , " Effect of mean strain on the cyclic stress-strain behavior of AISI 316 stainless steel, " Materials science and Engineering A, Vol. 354, pp. 270-278.
Eneres, W. J., DeVor, R. E. and Kapoor, S. G., (1995), " A Dual-Mechanism Approach to the Prediction of Machining Forces, " ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541.
Fuch, H. O. and Stephens, R. I., (1980), " Metal Fatigue in Engineering, " John Willy and Sons, New York.
Kline, W. A., Devor, R. E., Snareef, I. A., (1982), " The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts, " International Journal of Machine Tool Design and Research, Vol. 22, No. 1, pp. 7-22.
Koenigsberger, F. and Sabberwal, A. J. P., (1961), " An Investigation into the Cutting Force Pulsations During Milling Operations, " International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.
Lee, S. W., Mayor, R. and Ni, J., (2006), " Dynamic Analysis of a Mesoscale Machine Tool, " ASME, J. Manufacturing Science and Engineering, Vol. 128, pp. 194-203.
Liao, M. and Yang, Q. X., (1992), " Probabilistic Model For Fatigue Crack Growth, " Engineering Fracture Mechanics, Vol. 43, pp. 651-655.
Martellotti, M. E., (1941), " An Analysis of the Milling Process, " Transaction of ASME, Vol. 63, pp. 677-700.
Martellotti, M. E., (1945), " An Analysis of the Milling Process, Part 2: Down Milling, " Transaction of ASME, Vol. 67, pp. 233-251.
Melkote, S. N. and Endres, W. J., (1998), " The Importance of Including Size Effect When Modeling Slot Milling, " ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75.
Ohchida, H., (1979), Analysis of Service Failures of Hitachi Products, Hitachi Company Report, July, Japan.
Park, H.W. and Liang, S. Y., (2007), " Analysis of The Scale Effect for Microscale Machine Tools, " International Manufacture Science And Engineering Conference, Atlanta, Georgia, USA, pp. 1-8.
Pirtini, M. and Lazoglu, I., (2005), " Forces and hole quality in drilling, " International Journal of Machine Tools & Manufacture, Vol. 45, pp. 1271-1281.
Ryu, S. H., Lee, H. S. and Chu, C. N., (2003), " The form error prediction in side wall machining considering tool deflection, " International Journal of Machine Tools and Manufacture, Vol. 43, pp. 1405-1411.
Sabberwal, A. J. P., (1961), " Chip Section and Cuting Force During the Milling Operation, " Annals of the CIRP, Vol. 10, pp. 197-203.
Santhanam, A.T., Tierney, P. and Hunt, J. L., (1990), Cemented Carbide, Metals Handbook, Vol. 2, pp. 950-961.
Schulz, H. and Moriwaki, T., (1992), " High-Speed Machining, " Annals of the CIRP, vol. 41, p.637.
Shigley, J. E. and Mischke, C. R., (2004), Mechanical Engineering Design, McGraw-Hill, New York.
Suresh, S., (1991), Fatigue of materials, Cambridge University Press, New York.
Tansel, I. N. and Arkan, T. T., (2000), " Tool wear estimation in micro-machining. Part I: tool usage–cutting force relationship, " International Journal of Machine Tools & Manufacture, Vol. 40, pp. 599-608.
Thomas Klünsner and Stefan Marsonera., (2010), " Effect of microstructure on fatigue properties of WC-Co hard metals" Procedia Engineering, Vol. 2, pp. 2001-2010.
Tlusty, J. and MacNeil, P., (1975), " Dynamics of Cutting Forces in End Milling, " Annals of the CIRP, Vol. 24, pp. 21-25,.
Torres, Y. and Anglada, M., (2001), " Fatigue mechanics of WC-Co cemented carbides, " International Journal of Refrectory Metals & Hard Materials, Vol. 19, pp. 341-348.
Torres, Y. and Sarin, V. K., (2005), " Loading mode effects on the fracture toughness and fatigue crack growth resistance of WC–Co cemented carbides, " Scripta Materialia, Vol. 52, pp. 1087-1091.
Vogler, M. P., Kapoor, S. G. and DeVor, R. E., (2004), " On the Modelling and Analysis of Machining Performance in Micro-End Milling, Part II: Cutting Force Prediction, " ASME Journal of Manufacturing Science and Engineering, Vol. 126, pp. 685-694.
Wang, J. J. and Liang, S. Y. and Book, W. J., (1994 ), " Convolution Analysis of Milling Force Pulsation, " ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.
Wang, J. J. and Zheng, C. M., (2002 ), " An analytical force model with shearing and ploughing mechanisms for end milling, " International Journal of Machine Tools & Manufacture, Vol. 42, pp. 761-771.
Wang, J. J., (1992 ) , Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, ph. D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.
Wang, W., Kweon, S. H. and Yang, S. H., (2005), " A study on roughness of the micro-end-milled surface produced by aminiatured machine tool, " Journal of Materials Processing Technology, Vol. 41, pp. 702-708.
Wöhler, A. (1870), " Über die Festigkeitsversuche mit Eisen and Stahl, " Zeitschrift für Bauwesen, Vol. 20, pp. 73-106.
Xiao, X. R., (1999), " Modeling of Load Frequency Effect on Fatigue Life of thermoplastic Composites, " Journal of Composite Materials, Vol. 33, pp. 1141-1158.
Yellowley, I., (1985) , " Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process, " International Journal of Machine Tool Design and Research, Vol. 25, pp. 337-346.