| 研究生: |
林明穎 Lin, Ming-Yin |
|---|---|
| 論文名稱: |
二階層動態批量存貨模式與解法發展 A study of two-echelon dynamic lot-sizing model |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 動態批量 、二階層存貨系統 、啟發式演算法 |
| 外文關鍵詞: | dynamic lot sizing, two-echelon inventory system, heuristic |
| 相關次數: | 點閱:104 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二階層動態批量問題包含供應鏈中的上游原物料及產品訂購、存貨管理與下游配銷商之進貨供貨控制等,如何有效地組織生產與採購活動以降低整體成本,是企業生產與存貨管理中重要的課題。目前動態批量相關研究雖然已經發展數十年,在求解方法與時間上均有很大的改良,但主要針對單階層生產存貨問題,二階層與多階層系統之動態存貨研究成果相對稀少,隨著供應鏈之廣泛運用,針對多階層系統之動態批量存貨研究有其理論與應用價值。
本研究探討有限期間內之二階層動態批量存貨問題,包含上游一個物流中心與下游一個配銷點,物流中心向外部訂貨,並根據配銷點的供貨需求,將產品由物流中心運送至下游配銷點。與古典動態問題相似,研究中假設每期的顧客需求為已知,在兩階層均不容許缺貨發生的狀況下,決定上下階層每一期的訂購批量,並使存貨相關總成本最小化,考慮成本包含:第一階層物流中心向外部訂購產品所產生的固定訂購成本與存貨持有成本,及第二階層配銷點向上游訂購產品所產生的固定訂購成本與存貨持有成本。在上下階層之運輸上,假設運輸或前置時間為零或固定常數,而運輸成本則依據古典動態存貨理論將其納入訂購成本中。
本研究以最小化總成本為目標,建立數學規劃模式,決定兩階層各期訂購批量,進而以目前文獻之理論基礎,建立二階層動態批量存貨問題最佳解特性,並利用其發展 之啟發式演算法,其中 為總規劃期數,以快速求得近似最佳或最佳存貨決策。演算實驗發現:在每期訂購成本與單位存貨持有成本皆固定的狀況下,演算法之求解品質優異,與最佳解比較,其總成本平均偏差為3.24%;在每期訂購成本為固定,而每期單位存貨持有成本變動之狀況下,啟發式解法與最佳解比較,其總成本平均偏差為9.39%,並發現需求平均值與總規劃期均會影響求解品質。
A two-echelon dynamic lot sizing problem without shortage has been addressed in this thesis. Demands of an item occur in finite planning periods, where warehouse at the upper echelon orders the item from supplier; and periodic delivery is made to distributor at the lower echelon. The demand at each period can only be satisfied from available stock at the distributor. Replenishment quantities for both warehouse and distributor at each period are to be determined to minimize the total relevant cost, which includes: ordering cost and inventory carrying cost at two echelons.
An integer programming model is developed to solve this dynamic lot sizing problem when the planning horizon is short or moderate. Four dominance properties of the optimal replenishment policy have been shown. Using these findings, a heuristic is developed to efficiently compute optimal or near optimal lot sizing policy, where n is the number of planning periods. The solution procedure consists of two phases: replenishment policy at the distributor is first determined by computing a proposed marginal cost ratio; and lot sizing policy at the warehouse is then determined, using the replenishment quantities obtained at phase one as input. In comparison with the optimum solutions obtained from integer programming models, the numerical study has shown that average cost deviations of solutions from the heuristic are 3.24% and 9.39% when ordering cost per period is fixed, while the inventory carrying cost per period is fixed and varied, respectively. It has also illustrated that both the mean demand per period and the length of planning horizon affect the solution quality.
Ahuja, R. K., D. S. Hochbaum. 2008. Solving linear cost dynamic lot-sizing problems in Time. Operations Research. 56, 255-261.
Barany, I., T. J. Van Roy, L. A. Wolsey. 1984. Uncapacited lot-sizing: The convex hull of solutions. Mathematical Programming Study. 22, 32-43.
Cárdenas-Barŕon, L. E., H.-M. Wee, M. F. Blos. 2011. Solving the vendor-buyer integrated inventory system with arithmetic-geometric inequality. Mathematical and Computer Modeling. 53, 991-997.
Chen, H.-D., D. W. Hearn, C.-Y. Lee. 1994. A new dynamic programming algorithm for the single item capacitated dynamic lot size model. Journal of Global Optimization. 4, 285-300.
Evans J. R. 1985. An efficient implementation of the Wagner-Whitin algorithm for dynamic lot-sizing. Journal of Operations Management. 5, 229-235.
Federgruen, A., M. Tzur. 1991. A simple forward algorithm to solve general dynamic lot-sizing models with periods in or time. Management Science. 37, 909-925.
Florian, M., M. Klein. 1971. Deterministic production planning with concave costs and capacity constraints. Management Science. 18, 12-20.
Harris, F. W. 1915. What quantity to make at once. In The Library of Factory Management, Vol. V. Operation and Costs A. W. Shaw Company, Chicago, 47-52.
Hwang, H.-C., W. van den Heuvel. 2012. Improved algorithms for a lot-sizing problem with inventory bounds and backlogging. Naval Research Logistics. 59, 244-253.
Jaruphongsa, W., S. Çetinkaya, C.-Y. Lee. 2004. A two-echelon inventory optimization model with demand time window considerations. Journal of Global Optimization. 30, 347-366.
Lee, C.-Y., S. Çetinkaya, W. Jaruphongsa. 2003. A dynamic model for inventory lot sizing and outbound shipment scheduling at a third-party warehouse. Operations Research. 51, 735-747.
Lee, C.-Y., S. Çetinkaya, A. Wagelmans. 2001. Dynamic lot size model with demand time windows. Management Science. 47, 1384-1395.
Liu, T. 2008. Economic lot sizing problem with inventory bounds. European Journal of Operational Research. 185, 204-215.
Matsuyama, K. 2001. The EOQ-Models modified by introducing discount of purchase price or increase of setup cost. International Journal of Production Economics. 73, 83-99.
Sedeňo-Noda, A., J. Gutiérrez, B. Abdul-Jalbar, J. Sicilia. 2004. An -algorithm for the dynamic lot size problem with limited storage and linear costs. Journal Computational Optimization and Applications. 28, 311-323.
Sarker, B. H., G. R. Parija. 1994. An optimal batch size for a production system operating under a fixed-quantity, periodic delivery Policy. The Journal of the Operational Research Society. 45, 891-900.
Sarker, B. H., G. R. Parija. 1996. Optimal batch size and raw material ordering policy for a production system with a fixed-interval, lumpy demand delivery system. European Journal of Operational Research. 89, 593-208.
Schwarz, L. B., L. Schrage. 1978. On echelon holding costs. Management Science. 24, 865-866.
Silver, E. A., D. F. Pyke, R. Peterson. 1998. Inventory Management and Production Planning and Scheduling, 3rd Edition. John Wiley & Sons. Hoboken, NJ.
Taft, E. W. 1918. The most economical production lot. Iron Age. 101, 1410-1412.
Tersine, R. J., S. Barman, R. A. Toelle. 1995. Composite lot sizing with quantity and freight discounts. Computers & Industrial Engineering. 28, 107-122.
Van Hoesel, S., A. Kolen, A. Wagelmans. 1991. A dual algorithm for the economic lot-sizing problem. European Journal of Operational Research. 52, 315-325.
Van Hoesel, S., A. Wagelmans. 1996. An algorithm for the economic lot-sizing problem with constant capacities. Management Science. 42, 142-150.
Wagelmans, A., S. Van Hoesel, A. Kolen. 1992. Economic lot-sizing: An -algorithm that runs in linear time in the Wagner-Whitin case. Operations Research. 40, S145-S156.
Wagner, H. M., T. M. Whitin. 1958. Dynamic version of the economic lot size model. Management Science. 5, 89-96.
Wahab, M. I. M., S. M. H. Mamun, P. Ongkunaruk. 2011. EOQ models for a coordinated two-level international supply chain considering imperfect items and environmental impact. International Journal of Production Economics. 134, 151-158.