簡易檢索 / 詳目顯示

研究生: 許翔傑
Hsu, Hsiang-Chieh
論文名稱: 使用於重力波探測器的低溫系統與主動阻尼減震系統的研究
Study of the cryogenic system and active vibration isolation system for gravitational wave detection
指導教授: 楊毅
Yang, Yi
共同指導教授: 王子敬
Wong, Henry Tsz-King
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 222
中文關鍵詞: 重力波探測低溫系統主動阻尼減震系統即時回饋控制
外文關鍵詞: Gravitational wave detection, Cryogenics system, Active vibration isolation system, Real-time feedback control
相關次數: 點閱:134下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地面干涉探測器,如LIGO、VIRGO和KAGRA,主要關注頻率大於10赫茲的重力波源,而太空探測器,如LISA,目標是頻率小於0.01赫茲的重力波。中央研究院物理研究所成立了一個名稱為ASGRAF的實驗室,它配備了基於低溫的雙扭桿重力探測器並運用Sagnac效應去測量訊號,並試圖填補LIGO和LISA之間的觀測空白。重力波探測器所配備的鏡子表面的熱擾動對干涉式重力波探測器的靈敏度造成一個本質上的限制。不僅如此,由於核心光學器件的表面和基底對光功率的吸收,將存在著熱梯度和扭曲的不利影響。這個問題可以通過選擇適當的測試質量的材料和環境溫度來緩解。故我們開發了一個由兩級脈衝管低溫冷卻器(PTC)組成的低溫系統,其中一級可維持溫度在50 K的溫度,而另一級可以達到4 K。除了減少探測器的熱雜訊外,該系統還可以對塗層在低溫環境中的光學和機械損耗測量做出貢獻。然而,引進低溫系統會造成另外一種振動,進而產生新的雜訊。來自PTC和驅動壓縮機的振動會造成一種周期性訊號。這將會影響到我們的重力波量測。對此我們有辦法做得更多,而不是勉強讓儀器在充滿噪音的環境中工作,而使之成為可能的一套技術被稱為即時回饋控制。一組探測器(光學探測器和加速規)和壓電執行器可以主動地隔離振動。六個光學探測器和六個加速規被安裝在與低溫致冷器相連的平台上,此平台有六個壓電執行器作為支撐腳。藉由這些探測器與執行器,我們發展一套即時回饋系統來主動降低來自於低溫致冷頭的振動。本研究介紹了ASGRAF實驗室以及團隊,並詳細闡述低溫系統的性能和安裝在上面的儀器實現的主動減震系統,以及我們系統如何即時回饋並控制整個系統的細節。目前為止,對於兩級的溫度記錄如下,我們4 K 以及 50 K平台達到了 3.87 K和34.16 K(此時低溫致冷頭頭在4 K 以及50 K端分別為2.80 K 和27.95 K)。而對於即時回饋的主動減震系統,我們現在可以在六個自由度中同時實現回饋控制,範圍是由0 Hz到大約1Hz之間,且在控制系統的同時,我們成功降低了該頻段間中的雜訊。

    The ground-based interferometric detectors, such as LIGO, VIRGO, and KAGRA, focus on the gravitational wave source with a frequency larger than 10 Hz, and the target of the space-borne detectors, such as LISA, is the gravitational waves with frequencies less than 0.01 Hz. A laboratory in Academia Sinica called ASGRAF, equipped with cryogenic-based dual-torsion bars gravitational detector and the sagnac interferometry, tries to fill the observation gaps between LIGO and LISA. The thermal fluctuation of mirror surfaces is the fundamental limitation of interferometric gravitation wave detectors. Furthermore, there are detrimental effects of thermal gradients and distortion due to the absorption of optical power in the surface and substrates of the core optics. The issue can be mitigated by well choosing the test mass material and the environment temperature. We developed a cryogenics system consisting of a two-stage pulse tube cryocooler (PTC); one stage is 50 K, while the other is 4 K. In addition to reducing the thermal noise of detectors, the system could also contribute to the coating's optical and mechanical loss measurements in the cryogenics environment. However, the unwanted measurable levels of equipment vibration from PTC and the electrically driven compressor are one of the problems for periodic noise. We have at our disposal the means to do more than barely make the instrument work in a noisy environment, and the set of techniques that makes this possible is called feedback control. A set of sensors (photosensors and accelerometers) and the piezoelectric actuators can actively isolate the cryogenics vibration. Six photosensors and six accelerometers are mounted on the stage, which is connected to the cryocooler and with six piezoelectric actuators as legs. This study presents the performance of the cryogenic system and active vibration isolation system achieved by the instruments mounted on it and the detail of real-time feedback control in our system. Recently, the temperature record of the lower and higher stage is 3.87 K and 34.16 K, respectively (cooling lower head 2.80 K and higher head 27.95 K). Also, we can achieve feedback control in the six degrees of freedom simultaneously with unity gain frequency below ~ 1Hz and suppress the noise in the frequency band under our control.

    Approval Letter i Abstract in Chinese ii Abstract in English iii Acknowledgements iv Contents viii List of Tables xv List of Figures xviii 1 Introduction 1 2 Gravitational Wave Science 4 2.1 Gravitational waves in general relativity 4 2.1.1 Descriptions of gravitational waves 7 2.1.2 Gravitational wave emission 8 2.2 Source of gravitational waves on Sub-Hz range 9 2.2.1 Motivation of improving low frequency sensitivity 9 2.2.2 Intermediate mass black holes 9 2.2.3 Stochastic gravitational wave background 12 3 Gravitational wave observation 13 3.1 Basic detection scheme 13 3.1.1 Angular dependence of the sensitivity of the interferometer 17 3.1.2 Folded interferometer arms 17 3.1.3 Recycling cavities 19 3.2 Laser interferometer gravitational-wave observatory (LIGO) 20 3.2.1 Advanced LIGO (aLIGO) 21 3.2.2 Cryogenic operation and LIGO Voyager 23 3.3 Other GW Detectors 25 4 Requirement of Cryogenic System in Academia Sinica Gravitational Physics Research Facility (ASGRAF) 26 4.1 The features of ASGRAF 27 4.1 The features of ASGRAF 27 4.1.1 Concept 27 4.1.2 Response to the gravitational waves 27 4.1.3 The Sagnac interferometer 30 4.2 Noises source 32 4.2.1 Seismic noise 32 4.2.2 Quantum noise .35 4.2.3 Thermal noise 37 4.2.4 Vacuum noise 40 4.2.5 Intensity noise 40 4.2.6 Parameters 41 4.3 The requirement for ASGRAF 41 4.3.1 The quantum limit detection 46 4.3.2 Intermediate mass black holes detection 47 4.3.3 The required temperature of ASGRAF 49 5 The Cryogenic System in ASGRAF 50 5.1 Test system of the cryogenics 50 5.1.1 The development of the cryogenic chamber 51 5.1.2 Cryogenic temperature sensors (Thermometers) 52 5.1.3 Multi-layer insulation (MLI) 59 5.1.4 Thermal loading map 62 5.1.5 Sidepod chamber 65 5.2 Overview of the whole system 69 6 Development of active vibration isolation system (AVIS) for the cryogenic system 71 6.1 The detail in the installation of the cryogenic system 71 6.2 Feedback control loop 73 6.2.1 The principle of the feedback control loop 74 6.2.2 Stability of the system 79 6.3 The components in the active vibration isolation system 82 6.3.1 Vibration sensor: Accelerometers 83 6.3.2 Vibration sensor: Photosensors 84 6.3.3 Piezoelectric Actuators 87 7 Characterization of Sensors and Actuators 90 7.1 Vibration Sensors: Photosensors 90 7.1.1 Model and assumption 90 7.1.2 Design of the photosensor 93 7.1.3 Readout and Electronics 98 7.1.4 Calibration 100 7.1.5 Installation 104 7.2 Vibration Sensors: Accelerometers 108 7.2.1 Introduction of the accelerometers 110 7.2.2 Readout and Electronics 112 7.2.3 Installation 114 7.3 Piezoelectric actuators 118 7.3.1 Introduction of the piezoelectric actuator 118 7.3.2 Readout and Electronics 119 8 Digital Control System 123 8.1 A brief introduction of the hardware in DGS 124 8.1.1 Optical timing distribution system 125 8.2 A brief introduction of the software in DGS 126 8.2.1 Motif Editor and Display Manager (MEDM) 127 8.2.2 Foton 127 8.2.3 Data Viewer (DV) 130 8.2.4 Diagnostic GUI (Diaggui) 130 9 Integration Test 132 9.1 Cooling procedure with two stages 132 9.2 Installation 134 9.3 Active vibration isolation with feedback control 134 9.3.1 First trial of feedback control 134 9.3.2 Problems in the first trial 141 9.3.3 Diagonalization 141 9.3.4 Control the system in six DoF simultaneously 150 10 Discussion 159 10.1 Cryogenic system 159 10.1.1 The thermal loading map 159 10.2 Sensors and actuators 160 10.2.1 Photosensors 160 10.2.2 Multiple reflections of the photosensors 160 10.2.3 The issue about the current of the LED 161 10.2.4 The temperature of the working environment 162 10.2.5 Accelerometers 62 10.2.6 Actuators 164 10.3 Vibration from the cryogenic system 164 10.3.1 The noise spectrum of the cryogenic system 164 10.3.2 Temperature-dependent of the cryocooler’s vibration 167 10.4 Active vibration isolation for the cryogenic system 169 11 Summary 170 Appendix A Transfer function of the suspension system 172 A.1 A suspension system 172 A.2 Transfer function (torque to angular velocity) 173 A.2.1 Lagrangian 174 A.2.2 Derivation 175 A.3 Transfer function (angle to angle) 178 A.4 Input parameters 180 Appendix B The derivation of the actuator matrix 183 B.1 The motions from the actuators 183 B.2 Numerical results 187 Appendix C Calibration of the Resistance thermometers (CX-1050-CU) 188 C.1 Jig for the sensors 188 C.2 Setup of the sensors 190 C.3 Data taking 190 C.4 Result 190 C.4.1 Curve fit 191 Appendix D The finite element calculation of the gravity field calibrators (GCal) 196 D.1 Gravity field calibrators 196 D.2 Point model of GCal 197 D.2.1 Configuration of GCal 197 D.2.2 Model 199 D.3 The results of different cases 201 D.3.1 Parameters 201 D.3.2 Point masses case 201 D.3.3 Finite element case 204 D.4 Summary 215 References 216

    [1] Hawking, S., [The Illustrated On the Shoulders of Giants: The Great Works of Physics and Astronomy], Running Press / Perseus Book (2004).
    [2] Feynman, R. P., Leighton, R. B., and Sands, M., [The Feynman lectures on physics; New millennium ed.], Basic Books, New York, NY (2010). Originally published 1963-1965.
    [3] Hulse, R. A., “The discovery of the binary pulsar,” Rev. Mod. Phys. 66, 699–710 (Jul 1994).
    [4] Taylor, J. H. and Weisberg, J. M., “New test of general relativity: Gravitational radiation and the binary
    pulsar PSR 1913+16,” Astrophys. J.; (United States) (2 1982).
    [5] Weber, J., “Detection and generation of gravitational waves,” Phys. Rev. 117, 306–313 (Jan 1960).
    [6] Weber, J., “Evidence for discovery of gravitational radiation,” Phys. Rev. Lett. 22, 1320–1324 (Jun 1969).
    [7] Abbott, B. P. et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (Feb 2016).
    [8] Einstein, A., “Die grundlage der allgemeinen relativitätstheorie,” Annalen der Physik 354(7), 769–822 (1916).
    [9] Maggiore, M., [Gravitational Waves: Volume 1: Theory and Experiments], Oxford University Press (102007).
    [10] Le Tiec, A. and Novak, J., “Theory of gravitational waves,” (07 2016).
    [11] Sekiguchi, T., Study of Low Frequency Vibration Isolation System for Large Scale Gravitational Wave Detectors, PhD thesis, Department of Physics, Graduate School of Science, The University of Tokyo (2016).
    [12] Nakamura, T., Mio, N., and Ohashi, M., [Detection of gravitational waves (in Japanese)], Kyoto University Press (1998).
    [13] Abbott, B. P. et al., “Gw170817: Observation of gravitational waves from a binary neutron star inspiral,” Phys. Rev. Lett. 119, 161101 (Oct 2017).
    [14] Abbott, B. P. et al., “Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A,” The Astrophysical Journal Letters 848, L13 (oct 2017).
    [15] Abbott, B. P. et al., “Multi-messenger observations of a binary neutron star merger,” The Astrophysical Journal Letters 848, L12 (oct 2017).
    [16] LIGO, “Gravitational wave chirp spectrogram,LIGO gallery.” https://www.ligo.caltech.edu/image/ligo20171016f (2022). Accessed: 2022-12-20.
    [17] Shimoda, T., Cryogenic Torsion Pendulum for Observing Low-frequency Gravity Gradient Fluctuation, PhD thesis, Department of Physics, Graduate School of Science, The University of Tokyo (2019).
    [18] Abbott, B. P. et al., “Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo,” Astronomy & Astrophysics 659, A84 (mar 2022).
    [19] Abbott, B. P. et al., “Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo,” The Astrophysical Journal Letters 882, L24 (sep 2019).
    [20] Smith, T. L., Kamionkowski, M., and Cooray, A., “Direct detection of the inflationary gravitational-wave background,” Phys. Rev. D 73, 023504 (Jan 2006).
    [21] Tyson, J. A. and Giffard, R. P., “Gravitational-wave astronomy,” Annual Review of Astronomy and Astrophysics 16(1), 521–554 (1978).
    [22] Barish, B. C., “The science and detection of gravitational waves,” Brazilian Journal of Physics (Dec 2002).
    [23] Bond, C., Brown, D., and Strain, A. F. K. A., “Multi-messenger observations of a binary neutron star merger,” Living reviews in relativity (Feb 2017).
    [24] Saulson, P. R., [Fundamentals of Interferometric Gravitational Wave Detectors], WORLD SCIENTIFIC, 2nd ed. (2017).
    [25] Moss, G. E., Miller, L. R., and Forward, R. L., “Photon-noise-limited laser transducer for gravitational antenna,” Appl. Opt. 10, 2495–2498 (Nov 1971).
    [26] Schutz, B. F. and Tinto, M., “Antenna patterns of interferometric detectors of gravitational waves –I. Linearly polarized waves,” Monthly Notices of the Royal Astronomical Society 224, 131–154 (01 1987).
    [27] Buonanno, A. and Chen, Y., “Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors,” Phys. Rev. D 64, 042006 (Jul 2001).
    [28] Bochner, B., “Simulating a dual-recycled gravitational wave interferometer with realistically imperfect optics,” General Relativity and Gravitation 35, 1029–1057 (Jun 2003).
    [29] The KAGRA Collaboration, “Laser interferometer gravitational-wave observatory.” https://www.ligo.caltech.edu/ (2022).
    [30] Raab, F., “Overview of LIGO instrumentation,” Proceedings of SPIE The International Society for Optical Engineering 5500 (09 2004).
    [31] The KAGRA Collaboration, “LIGO hanford.” https://www.ligo.caltech.edu/WA (2022).
    [32] The KAGRA Collaboration, “LIGO livingston.” https://www.ligo.caltech.edu/LA (2022).
    [33] The KAGRA Collaboration, “LIGO research center in massachusetts institute of technology.” https://www.ligo.caltech.edu/MIT (2022).
    [34] Buikema, A. et al., “Sensitivity and performance of the Advanced LIGO detectors in the third observing run,” Physical Review D 102 (sep 2020).
    [35] The LIGO Scientific Collaboration, “Advanced LIGO,” Classical and Quantum Gravity 32, 074001 (mar 2015).
    [36] LIGO-Virgo Collaboration, “LIGO-Virgo cumulative event/ candidate rate plot o1-o3,” LIGO DCC (G1901322-v25) (Sep 2022).
    [37] The LIGO-Virgo-KAGRA Collaboration, “Observing scenario timeline graphic, post-o3,” LIGO DCC (LIGO-G2002127-v13) (Nov 2022).
    [38] Abbott, B. P. et al., “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Reviews in Relativity 23, 3–23 (Sep 2020).
    [39] Abbott, B. P. et al., “Binary black hole mergers in the first Advanced LIGO observing run,” Phys. Rev. X 6, 041015 (Oct 2016).
    [40] Abbott, B. P. et al., “Gw170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2,” Phys. Rev. Lett. 118, 221101 (Jun 2017).
    [41] Abbott, B. P. et al., “Gw170608: Observation of a 19 solar-mass binary black hole coalescence,” The Astrophysical Journal Letters 851, L35 (dec 2017).
    [42] Abbott, B. P. et al., “Gw170814: A three-detector observation of gravitational waves from a binary black hole coalescence,” Phys. Rev. Lett. 119, 141101 (Oct 2017).
    [43] Abbott, B. P. et al., “Gwtc-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs,” Phys. Rev. X 9, 031040 (Sep 2019).
    [44] Abbott, B. P. et al., “Multi-messenger observations of a binary neutron star merger*,” The Astrophysical Journal Letters 848, L12 (oct 2017).
    [45] The KAGRA Collaboration, “Gracedb public alerts database for O3.” https://gracedb.ligo.org/superevents/public/O3/ (2022). Accessed: 2022-12-29.
    [46] The LIGO Scientific Collaboration, “Instrument science white paper 2021,” LIGO DCC (LIGO-T2100298–v2) (Jul 2021).
    [47] Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., and Yamamoto, H., “Interferometer design of the kagra gravitational wave detector,” Phys. Rev. D 88, 043007 (Aug 2013).
    [48] Chassande-Mottin, E. et al., “Multimessenger astronomy with the Einstein Telescope,” General Relativity and Gravitation 43, 437–464 (Feb 2011).
    [49] Adhikari, R. X. et al., “A cryogenic silicon interferometer for gravitational-wave detection,” Classical and Quantum Gravity 37, 165003 (jul 2020).
    [50] Amaro-Seoane et al., “Laser Interferometer Space Antenna,” (2017).
    [51] Kawamura et al., “Current status of space gravitational wave antenna DECIGO and B-DECIGO,” (2020).
    [52] Ando, M., Ishidoshiro, K., Yamamoto, K., Yagi, K., Kokuyama, W., Tsubono, K., and Takamori, A., “Torsion-bar antenna for low-frequency gravitational-wave observations,” Phys. Rev. Lett. 105, 161101 (Oct 2010).
    [53] Shoda, A., Kuwahara, Y., Ando, M., Eda, K., Tejima, K., Aso, Y., and Itoh, Y., “Ground-based low-frequency gravitational-wave detector with multiple outputs,” Phys. Rev. D 95, 082004 (Apr 2017).
    [54] Shimoda, T., Takano, S., Ooi, C. P., Aritomi, N., Shoda, A., Michimura, Y., and Ando, M., “Torsion-bar antenna: a ground-based mid-frequency and low-frequency gravitational wave detector,” (2018).
    [55] Shoda, A., Development of a High-Angular-Resolution Antenna for Low-Frequency Gravitational-Wave Observation, PhD thesis, Department of Physics, Graduate School of Science, The University of Tokyo (2015).
    [56] Mansuripur, M., [The Sagnac interferometer], 182–196, Cambridge University Press, 2 ed. (2009).
    [57] Ismail, A., “Report on sensitivity estimation of CHRONOS,” in [Coating (Mirror) Thermal Noise ], 1–12 (2022).
    [58] Sumitomo Heavy Industries, Ltd., “RP-082B2 4K pulse tube cryocooler series.” https://www.shicryogenics.com/product/rp-082b2-4k-pulse-tube-cryocooler-series/ (2022). Accessed: 2022-12-30.
    [59] Yamada, T., Tomaru, T., Suzuki, T., Ushiba, T., Kimura, N., Takada, S., Inoue, Y., and Kajita, T., “High performance thermal link with small spring constant for cryogenic applications,” Cryogenics 116, 103280 (2021).
    [60] Lake Shore Cryotronics, Inc., “Cryogenic temperature sensors.” https://www.lakeshore.com/products/categories/temperature-products/cryogenic-temperature-sensors (2022). Accessed: 2022-12-30.
    [61] Cryogenic Control Systems Inc. (Cryo-con), “Cryogenic control systems Inc. (cryo-con).” https://www.cryocon.com/ (2022). Accessed: 2022-12-30.
    [62] PCB Piezotronics, Inc., “Accelerometer, ICP®, seismic model 393b31.” https://www.pcb.com/products?m=393B31 (2022). Accessed: 2022-12-30.
    [63] "Physiktors Instrumente (PI) GmbH & Co.KG, “P844 preloaded piezo actuators." https://www.physikinstrumente.com/en/products/linear-actuators/nanopositioning-piezo-actuators/p-844-preloaded-piezo-actuators-101210(2022). Accessed: 2022-12-30.
    [64] MESS-TEK Co.,Ltd., “MESS-TEK M-9914-FB88 flexure end piece.” https://www.mess-tek.co.jp/product/m-9914 (2022). Accessed: 2022-12-30.
    [65] Physik Instrumente (PI) GmbH & Co. KG, “P-176.50-60-Bxx-Fxx tips for piezo actuators.”https://www.physikinstrumente.com/en/products/sensors-components-accessories/p-176xx-p-176bxx-p-176fxx-tips-for-piezo-actuators-102300 (2022). Accessed: 2022-12-30.
    [66] Thorlabs, Inc., “LED1200E - 1200 nm epoxy-encased LED, 2.5 mW, T-1 3/4.” https://www.thorlabs.com/thorproduct.cfm?partnumber=LED1200E (2022). Accessed: 2022-12-30.
    [67] Thorlabs, Inc., “FGA21 - InGaAs Photodiode, 25 ns Rise Time, 800-1700 nm, Ø2 mm Active Area.”https://www.thorlabs.com/thorproduct.cfm?partnumber=FGA21 (2022). Accessed: 2022-12-30.
    [68] Thorlabs, Inc., “XR50P/ M - 50 mm travel linear translation stage, side-mounted micrometer, M6x 1.0 taps.” https://www.thorlabs.com/thorproduct.cfm?partnumber=XR50P/M#ad-image-0 (2022). Accessed: 2022-12-30.
    [69] PCB Piezotronics, Inc.,“482C series 4-channel signal conditioners.”
    [70] Mirion Technologies, “Model 3002D from canberra.” https://www.directindustry.com/prod/canberra-industries/product-23661-555309.html (2022). Accessed: 2022-12-30.
    [71] Karki S, Kissel J, S. R. L. and E, G., “DARM signal chain (calibration subway map),” in [Tech. Rep.],LIGO–G1501518–v18 (2018).
    [72] Computer, S. M., “SuperServer 6029U-TR4.” https://www.supermicro.com/zh_tw/products/system/2U/6029/SYS-6029U-TR4.cfm (2022). Accessed: 2022-12-23.
    [73] The LIGO Scientific Collaboration, “Quick start guide optical timing distribution system Advanced LIGO,” LIGO DCC(LIGO-E080541-v5) (Nov 2010).
    [74] Cahillane, C., Betzwieser, J., Brown, D. A., Goetz, E., Hall, E. D., Izumi, K., Kandhasamy, S., Karki, S., Kissel, J. S., Mendell, G., Savage, R. L., Tuyenbayev, D., Urban, A., Viets, A., Wade, M., and Weinstein,
    A. J., “Calibration uncertainty for Advanced LIGO’s first and second observing runs,” Phys. Rev. D 96, 102001 (Nov 2017).
    [75] Julius S. Bendat, A. G. P., [Random Data: Analysis and Measurement Procedures, 4th Edition], John Wiley & Sons, New York (2010).
    [76] Cryotronics,L., “Sensor calibration accuracies.” https://www.lakeshore.com/docs/default-source/product-downloads/literature/lstc_appendixd_l.pdf?sfvrsn=6b9ac223_4. Accessed: 2023-02-03.
    [77] Karki, S., Tuyenbayev, D., Kandhasamy, S., Abbott, B. P., Abbott, T. D., Anders, E. H., Berliner, J., Betzwieser, J., Cahillane, C., Canete, L., Conley, C., Daveloza, H. P., De Lillo, N., Gleason, J. R., Goetz, E., Izumi, K., Kissel, J. S., Mendell, G., Quetschke, V., Rodruck, M., Sachdev, S., Sadecki, T., Schwinberg, P. B., Sottile, A., Wade, M., Weinstein, A. J., West, M., and Savage, R. L., “The Advanced LIGO photon calibrators,” Review of Scientific Instruments 87(11), 114503 (2016).
    [78] Goetz, E., Kalmus, P., Erickson, S., Savage, R. L., Gonzalez, G., Kawabe, K., Landry, M., Marka, S., O'Reilly, B., Riles, K., Sigg, D., and Willems, P., “Precise calibration of LIGO test mass actuators using
    photon radiation pressure,” Classical and Quantum Gravity 26, 245011 (nov 2009).
    [79] Abbott, B. P. et al., “Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914,” Phys. Rev. D 95, 062003 (Mar 2017).
    [80] Goetz, E., Savage, R. L., Garofoli, J., Gonzalez, G., Hirose, E., Kalmus, P., Kawabe, K., Kissel, J., Landry, M., O'Reilly, B., Siemens, X., Stuver, A., and Sung, M., “Accurate calibration of test mass displacement in the LIGO interferometers,” Classical and Quantum Gravity 27, 084024 (apr 2010).
    [81] Sinsky, J. and Weber, J., “New source for dynamical gravitational fields,” Phys. Rev. Lett. 18, 795–797 (May 1967).
    [82] Sinsky, J. A., “Generation and detection of dynamic newtonian gravitational fields at 1660 cps,” Phys. Rev. 167, 1145–1151 (Mar 1968).
    [83] Forward, R. L. and Miller, L. R., “Generation and detection of dynamic gravitational‐gradient fields,” Journal of Applied Physics 38(2), 512–518 (1967).
    [84] Hirakawa, H., Tsubono, K., and Oide, K., “Dynamical test of the law of gravitation,” Nature 283, 184–185 (Jan 1980).
    [85] Kuroda, K. and Hirakawa, H., “Experimental test of the law of gravitation,” Phys. Rev. D 32, 342–346 (Jul 1985).
    [86] Mio, N., Tsubono, K., and Hirakawa, H., “Experimental test of the law of gravitation at small distances,” Phys. Rev. D 36, 2321–2326 (Oct 1987).
    [87] Astone, P. et al., “Evaluation and preliminary measurement of the interaction of a dynamical gravitational near field with a cryogenic gravitational wave antenna,” Zeitschrift für Physik C Particles and Fields 50, 21–29 (Mar 1991).
    [88] Astone, P. et al., “Experimental study of the dynamic newtonian field with a cryogenic gravitational wave antenna,” The European Physical Journal C - Particles and Fields 5, 651–664 (Oct 1998).
    [89] Matone, L., Raffai, P., Márka, S., Grossman, R., Kalmus, P., Márka, Z., Rollins, J., and Sannibale, V., “Benefits of artificially generated gravity gradients for interferometric gravitational-wave detectors,” Classical and Quantum Gravity 24, 2217–2229 (apr 2007).
    [90] Estevez, D., Lieunard, B., Marion, F., Mours, B., Rolland, L., and Verkindt, D., “First tests of a newtonian calibrator on an interferometric gravitational wave detector,” Classical and Quantum Gravity 35, 235009
    (nov 2018).
    [91] Estevez, D., Mours, B., and Pradier, T., “Newtonian calibrator tests during the Virgo O3 data taking,” Classical and Quantum Gravity 38, 075012 (mar 2021).
    [92] Inoue, Y., Haino, S., Kanda, N., Ogawa, Y., Suzuki, T., Tomaru, T., Yamanmoto, T., and Yokozawa, T., “Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure
    and gravity field calibrators,” Phys. Rev. D 98, 022005 (Jul 2018).
    [93] Ross, M. P., Mistry, T., Datrier, L., Kissel, J., Venkateswara, K., Weller, C., Kumar, K., Hagedorn, C., Adelberger, E., Lee, J., Shaw, E., Thomas, P., Barker, D., Clara, F., Gateley, B., Guidry, T. M., Daw, E., Hendry, M., and Gundlach, J., “Initial results from the LIGO newtonian calibrator,” (2021).
    [94] Raffai, P., Szeifert, G., Matone, L., Aso, Y., Bartos, I., Márka, Z., Ricci, F., and Márka, S., “Opportunity to test non-newtonian gravity using interferometric sensors with dynamic gravity field generators,” Phys. Rev. D 84, 082002 (Oct 2011).
    [95] Kawasaki, A., “Measurement of the newtonian constant of gravitation G by precision displacement sensors,” Classical and Quantum Gravity 37, 075002 (feb 2020).
    [96] Ma’arif, M. et al., “Gravitational yukawa potential search (GRYPS) with gravity field calibrators [unpublished manuscript],” (2023).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE