簡易檢索 / 詳目顯示

研究生: 許家棋
Hsu, Chia-Chi
論文名稱: 以氯鹽萃取與電解法回收廢鉛蓄電池鉛膏中的鉛
Recovery of lead from waste lead paste by brine leaching (HCl-NaCl) and electrolysis
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 鉛回收鉛膏氯鹽浸漬電解
外文關鍵詞: lead recovery, lead paste, brine leaching, electrolysis
相關次數: 點閱:165下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的鉛蓄電池稽核認證回收量近年來持續上升,而廢鉛蓄電池中含有大量金屬鉛,必須回收再利用。目前台灣廢鉛蓄電池處理廠皆採用傳統的火法冶煉,此法易產生大量SO2酸性氣體、CO2溫室氣體及含鉛煙塵和含鉛爐渣等廢棄物,因此發展濕法冶金回收鉛技術,可望能減少火法冶煉對環境的污染以及有害事業廢棄物的產生。
    本研究整合「氯鹽萃取」與「電解法」兩項濕式冶金技術回收鉛膏中的鉛,以取自國內某廢鉛蓄電池處理廠之鉛膏為樣品,經初步篩網過篩後,利用XRD及EDS分析其主要組成為PbO、PbO2、Pb2(SO4)O,鉛含量約77 wt%。在氯鹽萃取實驗中,探討固液比(S/L)、Cl-濃度、HCl濃度和浸漬溫度對鉛膏浸漬溶出鉛效果的影響。結果顯示,在最佳條件下:180 min、S/L = 0.02 kg/L、浸漬溫度70℃、[Cl-] = 4.73 M、[HCl] = 1.0 M,鉛萃取率可達99 %以上,並溶解99.9 wt%的鉛膏量。
    靜置萃取溶液待冷卻後,接續電解法實驗,以不銹鋼陰極片電鍍鉛金屬,及DSA(IrO2@Ti)陽極網電沉積二氧化鉛,回收萃取液中鉛的,探討電流、及萃取階段HCl濃度、Cl-濃度對電解鉛回收率的影響。結果顯示,在最佳電解條件下:180 min、[HCl] = 1.0 M、[Cl-] = 3.32 M、S/L = 0.02 kg/L、I = 6.0 A,鉛回收率可達96.5 %。

    There are a lot of lead in waste lead-acid batteries. So, batteries should be recycled properly for recovery of lead. At present, All of waste lead-acid batteries plants in Taiwan use pyrometallurgical technique. But this technique will produce high lead content of byproducts and cause SO2 pollution. Consequently, this study tries to use hydrometallurgical technique to recover lead. This study uses HCl-NaCl system to dissolve lead paste and recover lead by electrolysis. Effectiveness of Pb extraction ratio by leaching lead paste was then evaluated by varying [Cl-], [HCl], S/L and temperature. Experimental results revealed that Pb extraction ratio was higher than 99 % at leaching time of 180 min, S/L of 0.02 kg/L, [Cl-] of 6.14 M, [HCl] of 1.0 M and temperature of 50 ℃ with dissolving 99.9 wt% of lead paste. After leaching, the solution cooled to room temperature, and electrolyzed with DSA anode and stainless steel tube cathode. Experimental results revealed that lead recovery was 96.5 % at electrolysis time of 180 min, [Cl-] of 3.32 M, [HCl] of 1.0 M and current intensity of 6.0 A. Lead was recovered on the cathode as metallic lead.

    摘要 I 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 鉛的背景 3 2-1-1 鉛 3 2-1-2 鉛對人體的危害 4 2-1-3 鉛蓄電池 5 2-2 鉛蓄電池回收再利用 7 2-3 冶金工學 9 2-3-1 火法冶金 9 2-3-2 濕法冶金 10 2-4 鉛膏濕法回收技術 10 2-4-1 NaOH浸漬電解法 11 2-4-2 檸檬酸鈉和檸檬酸-檸檬酸鈉溶液浸漬 14 2-4-3 醋酸-檸檬酸鈉溶液浸漬 17 2-4-4 化學轉化法 20 2-4-5 氯鹽法 21 2-4-6 固相電解法 24 第三章 實驗設備、材料與方法 26 3-1 研究架構及流程 26 3-2 實驗藥品 27 3-3 實驗裝置 27 3-4 實驗步驟 30 3-5 實驗檢測儀器與分析方法 32 3-5-1 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma-Optical Emission Spectrometer; ICP-OES) 32 3-5-2 X光繞射分析儀(X-ray Diffraction Analyzer; XRD) 32 3-5-3 能量散佈分析儀(Energy Dispersive Spectrometer; EDS) 33 第四章 結果與討論 34 4-1 鉛膏前處理及基本性質分析 34 4-2 浸漬實驗變因探討 37 4-2-1 萃取效果的動力探討 37 4-2-2 Cl-濃度對萃取效果影響 38 4-2-3 溫度對萃取效果影響 41 4-2-4 HCl濃度對萃取效果影響 42 4-2-5 固液比S/L對萃取效果影響 45 4-2-6 溫度及Cl-濃度對萃取效果影響 46 4-2-7 浸漬殘餘固體分析 48 4-2-8 氯鹽法浸漬結果比較 50 4-3 電解實驗變因探討 51 4-3-1 電流強度對電解效果影響 52 4-3-2 Cl-濃度對電解效果影響 55 4-3-3 HCl濃度對電解效果影響 57 4-3-4 固體XRD分析 59 4-3-5 鉛膏處理結果比較 62 第五章 結論與建議 64 5-1 結論 64 5-2 建議 64 參考文獻 66 附錄A 69 附錄B 70 附錄C 71

    [1] International Lead and Zinc Study Group.
    [2] X. Tian, Y. Gong, Y. Wu, A. Agyeiwaa, T. Zuo, "Management of used lead acid battery in China: secondary lead industry progress, policies and problems." Resources, Conservation and Recycling 93 (2014): 75-84.
    [3] 潘致弘, "鉛對健康危害預防手冊." 行政院勞工委員為勞工安全衛生研究所編印, 中華民國, 2002, 七月.
    [4] 方仁傑, "鉛酸電池充電特性之研究." 碩士論文, 電子工程研究所, 義守大學, 2009.
    [5] M. Coleman, C.K. Lee, W.G. Hurley, "State of health determination: two pulse load test for a VRLA battery." Power Electronics Specialists Conference, 2006.
    [6] Oman, Henry, "Making batteries last longer [for electric vehicles]." IEEE Aerospace and Electronic Systems Magazine 14.9 (1999): 19-21.
    [7] Oman, Henry, "Battery developments that will make electric vehicles practical." IEEE Aerospace and Electronic Systems Magazine 15.8 (2000): 11-21.
    [8] T. Tsujikawa, K. Yabuta, T. Matsushita, "Development of VRLA battery capacity estimation system." INTELEC 07-29th International Telecommunications Energy Conference, IEEE, 2007. p. 788-793.
    [9] Joseph M. McAndrews, Richard H. Jones, "A valve regulated lead acid battery management system (VMS)." Telecommunications Energy Conference, INTELEC'96., 18th International. IEEE, 1996. p. 507-513.
    [10] 行政院環境保護署-資源回收網.
    [11] 許晏彰, "以濕式法從廢鉛蓄電池回收鉛之研究. " 碩士論文, 光機電暨材料研究所, 吳鳳技術學院, 2009.
    [12] G. Badanoiu, T. Buzatu, M. Buzatu, M. Butu, "Study concerning PbO solubility in NaOH solution for the treatment of sulfate-oxide pastes obtained from dismantling used lead-acid batteries." Revista de Chimie 64 (2013): 1004-1010.
    [13] 焦志良, 陈为亮, 张旭, 朱玉平, 许康齐, 妍洁, "从二次含铅物料中湿法回收铅的研究现状." 湿法冶金 33.2 (2014): 90-93.
    [14] G. Badanoiu, T. Buzatu, V.G. Ghica, M. Buzatu, G.Iacob, I.M. Petrescu, "Study of PbSO4 solubilisation in NaOH solution, for the treatment of oxide-sulphate pastes obtained from dismembered lead-acid batteries." U.P.B. Sci. Bull., Series B, Vol. 76, Iss. 1, 2014, ISSN: 1454-2331.
    [15] T. Buzatu, M.I. Petrescu, V.G. Ghica, M. Buzatu, G. Iacob, "Processing oxidic waste of lead‐acid batteries in order to recover lead." Asia‐Pacific Journal of Chemical Engineering 10.1 (2015): 125-132.
    [16] J. Pan, C. Zhang, Y. Sun, Z. Wang, Y. Yang, "A new process of lead recovery from waste lead-acid batteries by electrolysis of alkaline lead oxide solution." Electrochemistry Communications 19 (2012): 70-72.
    [17] T. Buzatu, G. Badanoiu, V.G. Ghica, M. Buzatu, "Experimental research on lead extraction from alkaline solutions by electrolysis." Revistade Chimie 66.8 (2015): 1147-1150.
    [18] 杨家宽, 朱新锋, 刘万超, 杨海玉, 肖波, "废铅酸电池铅膏回收技术的研究进展." 现代化工 29.3 (2009): 32-37.
    [19] 何东升, 李巧双, 杨典奇, 杨聪, 王贤晨, 杨家宽, "PbSO4, PbO 在柠檬酸钠溶液中溶解行为." 化工进展 33.2 (2014): 333-336.
    [20] M.S. Sonmez, R.V. Kumar, "Leaching of waste battery paste components. Part 1: Lead citrate synthesis from PbO and PbO2." Hydrometallurgy 95.1 (2009): 53-60.
    [21] M.S. Sonmez, R.V. Kumar, "Leaching of waste battery paste components. Part 2: leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution." Hydrometallurgy 95.1 (2009): 82-86.
    [22] X. Zhu, X. He, J. Yang, L. Gao, J. Liu, D. Yang, X. Sun, W. Zhang, Q. Wang, R.V. Kumar, "Leaching of spent lead acid battery paste components by sodium citrate and acetic acid." Journal of hazardous materials 250-251 (2013): 387-396.
    [23] X. Zhu, L. Li, X. Sun, D. Yang, L. Gao, J. Liu, R.V. Kumar, J. Yang, "Preparation of basic lead oxide from spent lead acid battery paste via chemical conversion." Hydrometallurgy 117-118 (2012): 24-31.
    [24] X. Zhu, J. Yang, L. Gao, J. Liu, D. Yang, X. Sun, W. Zhang, Q. Wang, L. Li, D. He, R.V. Kumar, "Preparation of lead carbonate from spent lead paste via chemical conversion." Hydrometallurgy 134-135 (2013): 47-53.
    [25] 齐美富, 郑园芳, 桂双林, "废铅酸蓄电池中铅膏氯盐体系浸取铅的动力学研究." 矿冶工程 30.6 (2010): 61-64.
    [26] 郑蒂基, 傅崇说, "关于铅-氯离子-水系在高离子强度及升温条件下的平衡研究." 中南矿冶学院学报 12 (1981): 1-9.
    [27] 李正山, 金鹏, 徐德芳, "氯盐法从含硫铅渣中回收铅." 成都科技大学学报 5 (1994): 58-64.
    [28] 王玉, "廢鉛蓄電池鉛膏濕法回收制取鉛品新工藝研究." 碩士論文, 化學工藝, 合肥工業大學, 2010.
    [29] 李发增, "氯盐法浸出含铅废渣的实验研究." 碩士論文, 化學工藝, 中南大學, 2014.
    [30] R.L. Zhang, X.F. Zhang, S.Z. Tang, A.D. Huang, "Ultrasound-assisted HCl–NaCl leaching of lead-rich and antimony-rich oxidizing slag." Ultrasonics Sonochemistry 27 (2015): 187-191.
    [31] 郭翠香, 赵由才, "从废铅蓄电池中湿法回收铅的技术进展." 东莞理工学院学报 13.1 (2006): 81-86.
    [32] 马旭, 王顺兴, 李晓燕, "固相电解法从废铅酸蓄电池中回收铅." 材料研究與應用 2.2 (2008): 141-144.
    [33] 陆克源, "固相电解还原提取金属铅." 化工冶金 3 (1983): 67-71.
    [34] 王维, 郑更银, "直接电解废铅酸电池中铅膏提取铅的工艺研究." 有色金属 (冶炼部分) 7 (2013): 004.
    [35] H. Liu, V.G. Papangelakis, "Solubility of Pb (II) and Ni (II) in mixed sulfate-chloride solutions with the mixed solvent electrolyte model." Industrial & engineering chemistry research 45.1 (2006): 39-47.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE