簡易檢索 / 詳目顯示

研究生: 應淳如
Yin, Chun-Ju
論文名稱: 超音速高溫衝擊流對熱防護材料沖蝕之模擬分析
Mechanical Erosion Simulation of Supersonic High Temperature Jet Impinging on Thermal Protection Material
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 193
中文關鍵詞: 熱防護材料機械能沖蝕兩相流衝擊壁面
外文關鍵詞: Thermal Protection Material, Mechanical Erosion, Two-phase Flow
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對兩相流流場對衝擊壁面之機械能沖蝕進行評估分析,使用Oka沖蝕物理模型計算三氧化二鋁(Al2O3)粒子對於衝擊壁面之累加沖蝕,初步假設在衝擊壁面上的熱邊界條件是固定壁溫,其衝擊壁面材料為石墨。由於影響沖蝕之因素眾多,分別針對Oka模型所需要之Oka參數、粒徑效應以及壁面退縮外型進行分析,其中觀察到Oka參數之參考沖蝕率(eref)為影響沖蝕大小之重要參數,並與實際實驗退縮量進行比對,整體之形狀趨勢以及沖蝕厚度峰值皆與實驗結果相符,唯有沖蝕位置分佈仍有差異;接著,在粒徑效應中,粒子大小也為影響沖蝕行為主要變數之一,故考慮合適之粒子大小相當重要以及貼近於實際狀況之粒徑分佈,將能有效的預估其沖蝕厚度;除上述參數以外,在衝擊壁面上,不同表面輪廓外型對於衝擊壁面的流場及熱負荷存在著很大的影響,進而改變粒子之沖蝕行為,故本研究嘗試加入動網格退縮探討其作用。
    由於Fluent內建之Oka沖蝕模型無法將其計算之沖蝕率進行動網格,因此本研究欲開發機械能沖蝕(mechanical erosion)外掛程式與動網格搭配;且為更有效評估衝擊擋板的升溫現象,本研究利用氣動力數值模擬計算固態火箭發動機噴焰熱流場之熱負荷,嘗試耦合熱防護材料之燒蝕邊界條件,將初始衝擊壁面上之熱邊界條件改為二維熱傳之燒蝕模型,假設衝擊壁面之熱通量沿擋板徑向與厚度方向熱傳,研究結果發現以石墨為壁面材料時,預估其壁面溫度無法到達燒蝕條件,因而只考慮機械能沖蝕對於石墨擋板之磨耗。

    Previous literatures show that the thermal loading effects of particles on the impinge surface is very significant, which is caused by the heat transfer of high temperature particles impinging on the surface. First of all, two-phase flow numerical simulation coupled with Oka model is used to simulate the mechanical erosion process of supersonic jet impinging on thermal protection material (TPM) in this study. The boundary condition on the impinge surface is initially assumed as the isothermal wall condition, and the erosion depth of impinging surface is calculated by considering the actual solid-propellant rocket alumina particles (about 16% of the plume) in the present computational fluid dynamics (CFD) model. Since there are many factors that affect erosion, this study investigates the sensitivity of Oka parameters, particle sizes, and wall surface profiles due to the particle impingement. Numerical results show that reference erosion rate (eref) is the main parameter that determines the magnitude of the erosion depth and 0.000154 is the appropriate value for this study. Moreover, when selecting particle sizes, this study recommends to reduce the particle diameter and to assume the maximum particle size as 5μm. The discussion for different wall surface profiles, the flat surface has deeper erosion thickness compare to the concave surface. Furthermore, this study also develops dynamic mesh user defined function (UDF) incorporating two-dimensional (2D) transient heat conduction model with Oka mechanical erosion model in the current simulation to evaluate the surface evolution process effects.

    摘要 I ABSTRACT III 誌謝 XV 目錄 XVIII 表目錄 XXI 圖目錄 XXII 符號索引 XXXIX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 衝擊流流場之數值模擬文獻 5 1.2.2 機械能沖蝕相關文獻 28 1.2.3 有效影響沖蝕效應之參數相關文獻 45 1.3 研究動機與目的 54 第二章 理論基礎與數學模型 56 2.1 連續相模型 57 2.1.1 連續相之基本假設 57 2.1.2 連續相之統御方程式 58 2.1.3 紊流模型 60 2.1.4 近壁面模型 62 2.2 離散相模型 66 2.2.1 離散相之基本假設 68 2.2.2 機械能沖蝕模型 69 2.2.3 粒子衝擊於壁面之邊界條件 70 2.2.4 離散相之基本方程式 73 2.2.5 粒子衝擊於壁面之能量及熱傳方程式 73 2.2.6 Parcel顆粒法 75 第三章 研究方法與模型建立 76 3.1 連續相研究方法 76 3.1.1 計算域與邊界條件設定 78 3.1.2 收斂條件 81 3.2 離散相條件設定 82 3.2.1 粒子之物理性質 82 3.2.2 粒子的壁面邊界條件 83 3.2.3 離散相之邊界條件 90 3.2.4 離散相之Oka沖蝕模型參數 91 3.3 網格與獨立性測試 92 3.3.1 Wall Y Plus 93 3.3.2 網格獨立性測試 96 第四章 結果與討論 104 4.1 兩相衝擊流數值模擬結果分析 104 4.1.1 兩相流流場分析 104 4.1.2 兩相流模擬與實驗結果比較 107 4.2 機械能沖蝕之參數分析 108 4.2.1 機械能沖蝕之Oka參數分析 111 4.2.2 機械能沖蝕之單粒徑效應 114 4.2.3 機械能沖蝕之多粒徑效應 125 4.2.4 機械能沖蝕之粒徑效應討論 140 4.2.5 機械能沖蝕考慮壁面退縮之影響 150 4.3 兩相流外掛程式模擬之討論 164 4.3.1 二維暫態熱傳模型建立 165 4.3.2 二維暫態熱傳外掛程式之模擬結果 168 4.3.3 機械能沖蝕模型建立及驗證 176 4.3.4 動態網格模型之條件設定 177 4.3.5 動網格沖蝕外掛程式之模擬結果 178 第五章 結論與未來工作 184 5.1 結論 184 5.1.1 機械能沖蝕之參數分析 184 5.1.2 外掛程式之模擬討論 186 5.2 未來工作 187 參考文獻 189

    【1】 https://www.ansys.com/zh-tw/blog/erosion-fluid-dynamics-modeling
    【2】 https://zhuanlan.zhihu.com/p/366283034
    【3】 Shitole, P. P., Gawande, S. H., Desale, G. R., & Nandre, B. D. (2015). Effect of impacting particle kinetic energy on slurry erosion wear. Journal of Bio-and Tribo-Corrosion, 1(4), 1-9.
    【4】 Stanton, D. W., & Rutland, C. J. (1996). Modeling fuel film formation and wall interaction in diesel engines. SAE transactions, 808-824.
    【5】 Koo, J. H., Miller, M. J., Weispfenning, J., & Blackmon, C. (2011). Silicone polymer composites for thermal protection system: fiber reinforcements and microstructures. Journal of composite materials, 45(13), 1363-1380.
    【6】 https://commons.wikimedia.org/wiki/File:VLS_MK41_Missile_Launch.gif
    【7】 陳韋丞.,“超音速高溫氣體衝擊擋板之數值模擬分析”,國立成功大學航空太空工程學系碩士論文, 2019.
    【8】 郭忠義. "超音速高溫兩相流衝擊流場之模擬分析." 成功大學航空太空工程學系學位論文,2020
    【9】 林泉昇. "超音速高溫衝擊流對熱防護材料燒/沖蝕之模擬分析." 成功大學航空太空工程學系學位論文, 2020
    【10】 徐文奇. 垂直發射裝置中燃氣兩相衝擊流場數值研究. MS thesis. 哈爾濱工程大學, 2007.
    【11】 Li, Z., Wang, N., Shi, B., Li, S., & Yang, R. (2019). Effects of particle size on two-phase flow loss in aluminized solid rocket motors. Acta Astronautica, 159, 33-40.
    【12】 Ma, Y. J., Bao, F. T., Xu, H., & Sun, L. (2015). Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-phase Flow Effects. In Applied Mechanics and Materials. Trans Tech Publications Ltd, 798, 185-189
    【13】 Neale, A., Derome, D., Blocken, B., & Carmeliet, J. (2006). CFD calculation of convective heat transfer coefficients and validation–Part 2: Turbulent flow. International Energy Agency-ECBCS Annex, 41.
    【14】 Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605.
    【15】 Finnie, I. (1960). Erosion of surfaces by solid particles. wear, 3(2), 87-103.
    【16】 McLaury, B. S., Shirazi, S. A., Shadley, J. R., & Rybicki, E. F. (1996). Modeling erosion in chokes. ASME-PUBLICATIONS-FED, 236, 773-782.
    【17】 Oka, Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear, 259(1-6), 95-101.
    【18】 Oka, Y. I., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear, 259(1-6), 102-109.
    【19】 Thakre, P., Rawat, R., Clayton, R., & Yang, V. (2013). Mechanical erosion of graphite nozzle in solid-propellant rocket motor. Journal of Propulsion and Power, 29(3), 593-601.
    【20】 Neilson, J. H., & Gilchrist, A. (1968). Erosion by a stream of solid particles. wear, 11(2), 111-122.
    【21】 Nguyen, V. B., Nguyen, Q. B., Liu, Z. G., Wan, S., Lim, C. Y. H., & Zhang, Y. W. (2014). A combined numerical–experimental study on the effect of surface evolution on the water–sand multiphase flow characteristics and the material erosion behavior. Wear, 319(1-2), 96-109.
    【22】 林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬” ,中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
    【23】 Songjiang, F., Wansheng, N., Qingfen, X., & Liwei, D. (2007). Numerical simulation of flow field and radiation of an aluminized solid-propellant rocket multiphase exhaust plume. In 39th AIAA Thermophysics Conference, 4415
    【24】 候曉, 何洪慶. (1991). 固體火箭噴管顆粒尺寸分級兩相跨音速流場計算推進技術, (1), 1-8.
    【25】 傅德彬, 劉琦, 陳建偉, 姜毅. (2004). 導彈發射過程數值模擬. 彈道學報, 16(3), 11-16.
    【26】 Aquaro, D., & Fontani, E. (2000). Erosion of Ductile and Britle materials: comparison between theretical and numerical models and experimental data. In 2000 AIMETA International Tribology Conference, 1, 289-296.
    【27】 Tang, H., Fang, M., Min, X., Wang, X., Huang, Z., Wen, R., & Wu, X. (2016). Mechanical properties and solid particle erosion behavior of LaMgAl11O19–Al2O3 ceramic at room and elevated temperatures. Journal of the American Ceramic Society, 99(6), 2138-2146.
    【28】 The semiconductor industry, "Properties and Characteristics of Graphite. " May 2013.
    【29】 Bergman, T. L., Lavine A. S., Incropera, F. P., and D. P. DeWitt. (2017) “Fundamentals of Heat and Mass Transfer”, 8th Edition, Wiley Publishing Co. 302-309.
    【30】 Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids (No. 536.23). Clarendon Press,.
    【31】 楊成麥.,“噴霧模式之參數對液態燃料注入超音速流場數值模擬分析影響之研究”,國立成功大學航空太空工程學系碩士論文, 2019.
    【32】 Fluent Theory Guide Chapter 16 Discrete Phase 16.7 Wall-Particle Reflection Model Theory
    【33】 Fluent Theory Guide Chapter 23 Modeling Discrete Phase 23.4 Setting Boundary Conditions for the Discrete Phase
    【34】 Fluent Theory Guide Chapter 16 Discrete Phase 16.8 Wall-Jet Reflection Model Theory
    【35】 https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node261.htm
    【36】 https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node396.htm
    【37】 https://www.researchgate.net/figure/Flow-diagram-showing-the-working-of-pressure-based-coupled-algorithm-in-FLUENT_fig12_272996896 (2015)
    【38】 York, B., Sinha, N., Dash, S., Anderson, L., Gominho, L., Koo, J., & Cheung, F. (1995, January). Steady/transient plume-launcher interactions and progress towards particulate/surface layer modeling. In 33rd Aerospace Sciences Meeting and Exhibit, 255.
    【39】 Tahsini, A. M., & Mousavi, S. T. (2012). Laminar impinging jet heat transfer for curved plates. International Journal of Aerospace and Mechanical Engineering, 6(12), 2788-2793.

    下載圖示 校內:2024-08-22公開
    校外:2024-08-22公開
    QR CODE