簡易檢索 / 詳目顯示

研究生: 葉碩儒
Yeh, Shuo-Ju
論文名稱: 針對GPS與北斗之陸基增強系統原型
A Ground Based Augmentation System Prototype for GPS and BDS
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 陸基增強系統北斗導航衛星系統全球定位系統民航完整性
外文關鍵詞: GBAS, BDS, GPS, Civil Aviation, Integrity
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球導航衛星系統(Global Navigation Satellite System, GNSS)泛指所有提供全球性服務的導航衛星系統,隨著空中交通運量的成長,其提供的導航服務對於民航使用者而言已是無可取代;不僅於此,其更是成為空中交通管理系統不可或缺的核心技術。為了使GNSS可以滿足民航上嚴格的導航需求,許多增強系統應運而生,其中的陸基增強系統(ground based augmentation system, GBAS)是國際民航組織(international civil aviation organization, ICAO)推薦的架構,其不僅可以滿足民航上的導航需求,還可以提升機場與空域使用效率,早在1990年代,美國就已經著手開始研究GBAS。為了自主發展屬於臺灣的GBAS,因此本論文發展GBAS演算法,並分析其在臺灣的效能。

    本論文的目標是研究並發展GBAS的原型,使其可以滿足CAT I等級的精確進場要求。該原型包括三個參考站以及一個使用者,參考站用於監測接收機收到的觀測量品質,並驗證其收到的導航資料,根據檢測結果找出會降低GBAS原型完整性(integrity)的衛星,將之視為不可用。最後將產生的觀測量修正量給使用者之前,GBAS原型還會比對三個參考站之間的修正量,確認其一致性,也同樣地會排除掉那些沒有通過檢測的衛星。最後虛擬使用者便會計算使用修正量後的定位,並根據RTCA (radio technical commission for aeronautics)文件計算該定位誤差的保護水平(protection level),作為分析GBAS原型的效能的依據。根據架設在國立成功大學的GBAS原型結果,其提供category (CAT) I精確進場服務的可用性(availability)為99.896%。由於GBAS會排除可能造成致命性危險之錯誤導引(hazardously misleading information, HMI)的衛星,使得用來定位的衛星數減少,造成保護水平的上升,當其大於警告極限(alert limit)時,GBAS原型的可用性便會降低。

    因此,本論文更進一步的目標便是降低保護水平,同時確保不會發生HMI。本論文提出的解決辦法便是提高衛星數量,整合中國的北斗導航衛星系統(BeiDou navigation satellite system, BDS)到GBAS演算法中;然而GBAS演算法是針對GPS設計的,因此在整合之前會有幾個關鍵問題需要解決,本論文將會詳細描述並討論該問題的解決方式,並透過架設在國際機場的實驗,展示雙系統GBAS原型的效能,並將之與GPS的GBAS原型以及BDS的GBAS原型互相比較。在機場的測試結果顯示雙系統GBAS原型提供CAT I精確進場服務的可用性超過99.999%,與GPS的GBAS原型相比,保護水平降低了24%;與BDS的GBAS原型相比,則是降低了52%。

    Global Navigation Satellite System (GNSS) is the generic term used for all the satellite navigation systems that have a global coverage. Nowadays, the air traffic management system which is based on the GNSS has been used as the primary system. Since the civil aviation requirements are stringent, several architectures aiming at augmenting the navigation satellite system were developed. In response to the problem, ground based augmentation system (GBAS) is recommended by international civil aviation organization (ICAO) to increase the capacity of airports with limited airspace, and has been carried out since the 1990s in the USA. To develop and implement our own GBAS, this work investigates the necessary algorithms.

    Thus, one objective of this work is to implement the GBAS algorithm to support terminal area navigation enhancements using augmented global positioning system (GPS) and meet the requirements of category (CAT) I precision approach and landing. The hardware configuration of GBAS prototype comprises three reference stations and one pseudo-user. To exclude the measurements with potential threat of integrity, the reference station monitors the measurements quality and validates the navigation data from receivers. Before broadcasting the corrections to user, the GBAS prototype algorithm checks the consistency of correction across all reference stations. Lastly, the protection levels are estimated by following radio technical commission for aeronautics (RTCA) documents for evaluating the performance of the GBAS prototype. The results demonstrate the capability of the GBAS prototype at National Cheng Kung University (NCKU) for CAT I approaches with 99.896% availability. To prevent the civil aviation users from the HMI, GBAS flags the satellites which impose potential integrity risk and excludes them from positioning. In general, if a GBAS user relies on fewer satellites for positioning, then the resulting protection level would be higher. While the protection level exceeds the alert limit, the navigation availability decrease.

    The further objectives of this work are to keep the protection level low and meet the navigation integrity requirement at the same time. As the solution, the additional ranging sources from BeiDou navigation satellite system (BDS) are intended to integrate into the current GBAS algorithm. However, since the GBAS algorithm is designed for GPS, issues must be resolved before the integration. For this purpose, this work demonstrates the analysis for the ranging source and details the solutions for the integration. At the end, this work conducts the field tests to show the capability of the dual-constellation GBAS prototype, and compare it to the one based on GPS only and BDS only. The field test results of the developed GBAS prototype with dual-constellation showed that the GBAS with the combined use of GPS and BDS has the capability of keeping the integrity and reducing the protection level at the same time. To compare with the GBAS prototype based on GPS only, the results at Kaohsiung international airport show improvements in the average protection level of 24% and that of the BDS only is 52%. Importantly, the reduced protection level obtained from the developed dual-constellation GBAS prototype can meet the CAT I requirements with more than 99.999% availability.

    摘要 I ABSTRACT III EXTENDED CHINESE ABSTRACT V ACKNOWLEDGEMENTS XII TABLE OF CONTENTS XIII LIST OF FIGURES XVI LIST OF TABLES XIX GLOSSARY OF ACRONYMS XX 1. INTRODUCTION 1 1.1. DIFFERENCES BETWEEN GPS AND BDS 1 1.2. MEASUREMENT MODEL AND ERROR SOURCE 3 1.3. GNSS AND CIVIL AVIATION 5 1.4. CIVIL AVIATION NAVIGATION 7 1.5. MOTIVATION AND OBJECTIVES 8 1.6. PREVIOUS WORK 9 1.7. SUMMARY OF CONTRIBUTIONS 10 1.7.1. IMPLEMENTATION OF GBAS PROTOTYPE IN TAIWAN 11 1.7.2. DEVELOPMENT OF DUAL-CONSTELLATION GBAS PROTOTYPE 11 1.8. DISSERTATION ORGANIZATION 12 2. PROBABILITY AND STATISTICS 14 2.1. GAUSSIAN DISTRIBUTION 14 2.2. CHI-SQUARE DISTRIBUTION 15 2.3. CENTRAL LIMIT THEOREM 17 2.4. T-TEST AND Z-TEST 17 2.5. CHI-SQUARE GOODNESS OF FIT TEST 20 2.6. CHI-SQUARE TEST FOR VARIANCE 22 2.7. SUMMARY 23 3. GBAS PROTOTYPE OVERVIEW 24 3.1. GBAS PROTOTYPE REQUIREMENT 24 3.2. GBAS PROTOTYPE HARDWARE CONFIGURATIONS 26 3.3. GBAS PROTOTYPE SOFTWARE ARCHITECTURE 27 3.4. CARRIER SMOOTHING AND CORRECTIONS 29 3.5. GBAS GROUND FACILITY ERROR STANDARD DEVIATION 30 3.6. GAUSSIAN OVERBOUNDING METHOD 31 3.7. SUMMARY 37 4. GBAS PROTOTYPE IMPLEMENTATION 39 4.1. SIGNAL QUALITY MONITORING (SQM) 39 4.2. DATA QUALITY MONITORING (DQM) 43 4.3. MEASUREMENT QUALITY MONITORING (MQM) 44 4.4. COMMON SET 52 4.5. MULTIPLE REFERENCE CONSISTENCY CHECK (MRCC) 53 4.6. SIGMA MEAN (σμ) MONITORING 56 4.7. MESSAGE FIELD RANGE TEST (MFRT) 59 4.8. GBAS PROTOTYPE PERFORMANCE EVALUATION 62 4.9. SUMMARY 65 5. DUAL-CONSTELLATION GBAS PROTOTYPE 67 5.1. INTRODUCTION 67 5.2. COMPATIBLE GBAS PROTOTYPE WITH BDS 69 5.2.1. SATELLITE POSITION DETERMINATION 69 5.2.2. MODIFIED QM ALGORITHM 69 5.2.3. MODIFIED MULTIPLE REFERENCE CONSISTENCY CHECK 72 5.2.4. MODIFIED USER POSITIONING ALGORITHM 74 5.3. RESULTS OF FIELD TEST AT RCKH 75 5.4. SUMMARY 82 6. CONCLUSIONS 84 REFERENCE 86

    1. Center, U.S.C.G.N. GPS Constellation Status. [cited 2016 April]; Available from: http://www.navcen.uscg.gov/?Do=constellationStatus.
    2. BeiDou Navigation Satellite System - Home. [cited 2016 April]; Available from: http://en.beidou.gov.cn/.
    3. Navstar GPS Space Segment/Navigation User Interfaces, G.N.J.P. Office, Editor. 2014, GPS Navstar Joint Program Office: El Segundo, CA.
    4. BeiDou Navigation Satellite System Signal In Space Interface Control Document. 2013, China Satellite Navigation Office.
    5. Jan, S.-S. and A.-L. Tao, The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System. Sensors, 2014. 14(8): p. 15182-15202.
    6. Parkinson, B.W., Global Positioning System: Theory and Applications. 1996: AIAA.
    7. Xie, G., Optimal On-Airport Monitoring of the Integrity of GPS-Based Landing Systems, in Electrical Engineering. 2004, Stanford University.
    8. Lee, J., GPS-Based Aircraft Landing Systems with Enhanced Performance: Beyond Accuracy, in Aeronautics And Astronautics. 2005, Stanford University.
    9. Global Navigation Satellite System (GNSS) Manual. 2005, ICAO. p. 69.
    10. Brown, R.G., A Baseline GPS RAIM Scheme and a Note on the Equivalence of Three RAIM Methods. Navigation, 1992. 39(3): p. 301-316.
    11. Yeh, S.-J., Development and Implementation of RAIM to Support the New ATM System, in Aeronautics and Astronautics. 2009, National Cheng Kung University: Tainan, Taiwan.
    12. Luo, M., et al., Development and Testing of the Stanford LAAS Ground Facility Prototype, in Proceedings of the National Technical Meeting of The Institute of Navigation. 2000: Pacific Hotel Disneyland, Anaheim, CA. p. 210 - 219.
    13. Jan, S.-S. and A.-L. Tao, Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System. Sensors, 2016. 16(5): p. 689-712.
    14. Gopalakrishnan, G.L., F. Schmidt-Bruecken, and O. Kalden, Simulation of Integrity and Availability of multi-constellation and multi-frequency GNSS Augmentation Systems, in Recent Advances in Space Technologies (RAST). 2013, IEEE: Istanbul. p. 1157 - 1162.
    15. Research on Integrity of Ground-based Augmentation System Under GPS/BDS Constellations Environment. Computer Engineering, 2015. 42.
    16. Walpole, R.E., et al., Probability and Statistics for Engineers and Scientists. 2007: Pearson Prentice Hall.
    17. Pullen, S. Augmented GNSS: Fundamentals and Keys to Integrity and Continuity. in ION GNSS Tutorial Presentation. 2011.
    18. Enge, P., et al., Wide Area Augmentation of the Global Positioning System. Proceedings of the IEEE, 1996. 84(8).
    19. Minimum Aviation System Performance Standards for Local Area Augmentation System (LAAS). 2004, RTCA: Washington D. C.
    20. Specification: Performance Type One Local Area Augmentation System Ground Facility, U.S.D.o. Transportation, Editor. 1999, Federal Aviation Administration.
    21. Luo, M., et al., Development and Testing of the Stanford LAAS Ground Facility Prototype, in Proceedings of the National Technical Meeting. 2000, The Institute of Navigation. p. 210-219.
    22. Normark, P.-L., et al., The Next Generation Integrity Monitor Testbed (IMT) for Ground System Development and Validation Testing, in Proceedings of the International Technical Meeting of the Satellite Division. 2001, The Institute of Navigation. p. 1200-1208.
    23. Minimum Operational Performance Standards for GPS/Local Area Augmentation System Airborne Equipment. 2001, RTCA: Washington, D.C.
    24. Shively, C.A. and R. Braff, An Overbound Concept For Pseudorange Error From the LAAS Ground Facility, in Proceedings of the IAIN World Congress and the Annual Meeting. 2000, The Institute of Navigation. p. 661-671.
    25. Gang Xie, S.P., Ming Luo, Per-Ludvig Normark, Dennis Akos, Jiyun Lee, Per Enge, Boris Pervan, Integrity Design and Updated Test Results for the Stanford LAAS Integrity Monitor Testbed, in Proceedings of the Annual Meeting. 2001, The Institute of Navigation. p. 681-693.
    26. Shuichi Matsumoto, S.P.a.M.R., Boris Pervan, GPS Ephemeris Verification for Local Area Augmentation System (LAAS) Ground Stations, in Proceedings of the International Technical Meeting of the Satellite Division. 1999, The Institute of Navigation p. 691-704.
    27. Sam Pullen, J.L., Ming Luo, Boris Pervan, Fang-Cheng Chan, Livio Gratton, Ephemeris Protection Level Equations and Monitor Algorithms for GBAS, in Proceedings of the 14th International Technical Meeting of the Satellite Division. 2001, The Institute of Navigation. p. 1738-1749.
    28. Worracharoen, P., Novel and Robust GBAS Integrity Concepts for Safe Aircraft Approach Using GPS and Galileo, in Department of Space Science. 2008, Lulea University of Technology: Kiruna.

    無法下載圖示 校內:2022-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE