簡易檢索 / 詳目顯示

研究生: 賴昀佐
Lai, Yun-Zuo
論文名稱: 醫院間調貨之血液存貨模型
The Blood Inventory Model with Lateral Transshipment among Hospitals
指導教授: 王泰裕
Wang, Tai-Yue
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 調貨血液存貨管理非凌越排序基因演算法
外文關鍵詞: lateral transshipment, blood inventory management, non-dominated sorting genetic algorithm II
相關次數: 點閱:65下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血液為一種易腐性產品,品質會隨著時間及環境影響而有所減少,再加上血液的取得需要仰賴民眾的熱心捐贈,在供給上相當不穩定,因此如何有效減少血液的過期及浪費就相當重要。此外,礙於法規上的限制,鮮少有人討論血液調貨的情況。本研究假設各醫院在(s,S)存貨策略下,以最小化血液供應鏈成本及最大化平均血液存貨剩餘壽命為目標,透過非凌越排序基因演算法及模擬方法的結合來求解出各醫院的在未調貨情況下最佳存貨參數,並與調貨的存貨模型在血液的因缺貨產生緊急訂購數量、過期數量等血液供應鏈評估指標上進行比較。
    本研究以壽命最短的血小板作為驗證對象,發現調貨機制能夠對於血液供應鏈總成本及平均存貨剩餘壽命有正面的效果,尤其最大存貨規則及最小運輸成本規則的效果較部分調貨更佳,總成本在最大存貨規則下改善比例達34.32%、在最小運輸成本規則下改善比例達34.29%及在部分調貨規則下改善比例達8.59%,而平均存貨剩餘壽命在以上三種調貨規則下分別改善比例達4.35%、4.28%及1.06%。

    Blood is a perishable product which reduces the quality over time. In addition, the supply of blood is very unstable because it is obtained through public donations. In the past, the research including blood lateral transshipment is rarely discussed due to legal restrictions. In this study, the optimal inventory parameters for each hospital under (s,S) policy are solved by a combination of non-dominated sorting genetic algorithm II and simulation to minimize the blood supply chain cost and maximize the average remaining blood life. We use the number of emergency order, expiration, total cost of blood supply chain and the average remaining life to evaluate the performance of lateral transshipment.
    In this study, we use the daily demand data of platelets for four hospitals to simulate and found that the lateral transshipment has a positive effect on the total cost of blood supply chain and average remaining blood life. In particular, the maximum inventory rule and the minimum transportation cost rule were more effective than the one-way transshipment rule, with an improvement of 34.32% in total cost under the maximum inventory rule, 34.29% of improvement under the minimum transportation cost rule, and 8.5% of improvement under the one-way transshipment rule. The average remaining blood life is improved by 4.35%, 4.28% and 1.06% under the above three transshipment rules.

    摘要 i 英文摘要 ii 誌謝 viii 目錄 ix 圖目錄 xi 表目錄 xiii 第壹章 緒論 1 第一節 研究背景與動機 2 第二節 研究目的 3 第三節 研究範圍 3 第四節 研究流程 4 第五節 論文架構 6 第貳章 文獻探討 7 第一節 血液供應鏈 7 第二節 非凌越排序基因演算法 14 第三節 模擬最佳化 18 第四節 小結 20 第參章 醫院間調貨之血液存貨管理模型 21 第一節 問題定義 21 第二節 參數符號及模型假設 23 第三節 具調貨功能之血品處理流程 27 第四節 模型建構 29 第五節 模型求解程序 36 第六節 模型績效衡量指標 40 第七節 小結 42 第肆章 模型驗證與分析 43 第一節 資料集產生 43 第二節 情境設定 45 第三節 模擬驗證與分析 46 第四節 小結 85 第伍章 結論與建議 86 第一節 研究結論 86 第二節 管理意涵 88 第三節 未來研究方向 89 參考文獻 90 附錄 95

    杜文靖 (2011年6月30日)。 血液基本介紹。台灣血液基金會。
    https://www.blood.org.tw/Internet/main/docDetail.aspx?uid=6536&pid=6387&docid=23909
    Abbasi, B., & Hosseinifard, S. Z. (2014). On the issuing policies for perishable items such as red blood cells and platelets in blood service. Decision Sciences, 45(5), 995-1020.
    Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation optimization: a review of algorithms and applications. Annals of Operations Research, 240(1), 351-380.
    Bandyopadhyay, S., & Bhattacharya, R. (2014). Solving a tri-objective supply chain problem with modified NSGA-II algorithm. Journal of Manufacturing Systems, 33(1), 41-50.
    Blake, J. T., Hardy, M., Delage, G., & Myhal, G. (2013). Déjà‐vu all over again: using simulation to evaluate the impact of shorter shelf life for red blood cells at H éma‐Q uébec. Transfusion, 53(7), 1544-1558.
    Dalalah, D., Ojiako, U., & Chipulu, M. (2020). On perishable inventory in healthcare: Random expiration dates and age discriminated demand. Journal of Simulation, 1-22.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    Dehghani, M., Abbasi, B., & Oliveira, F. (2021). Proactive transshipment in the blood supply chain: A stochastic programming approach. Omega, 98, 102112.
    Dillon, M., Oliveira, F., & Abbasi, B. (2017). A two-stage stochastic programming model for inventory management in the blood supply chain. International Journal of Production Economics, 187, 27-41.
    Duan, J., & Wang, J. (2021). Energy-efficient scheduling for a flexible job shop with machine breakdowns considering machine idle time arrangement and machine speed level selection. Computers & Industrial Engineering, 161, 107677.
    Duan, Q., & Liao, T. W. (2013). A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. International journal of production economics, 145(2), 658-671.
    Duan, Q., & Liao, T. W. (2014). Optimization of blood supply chain with shortened shelf lives and ABO compatibility. International Journal of Production Economics, 153, 113-129.
    He, J., Huang, Y., & Chang, D. (2015). Simulation-based heuristic method for container supply chain network optimization. Advanced Engineering Informatics, 29(3), 339-354.
    Hosseinifard, Z., & Abbasi, B. (2018). The inventory centralization impacts on sustainability of the blood supply chain. Computers & Operations Research, 89, 206-212.
    Jennings, J. B. (1973). Blood bank inventory control. Management Science, 19(6), 637-645.
    Katsaliaki, K. (2008). Cost-effective practices in the blood service sector. Health policy, 86(2-3), 276-287.
    Larimi, N. G., Yaghoubi, S., & Hosseini-Motlagh, S. M. (2019). Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories. Socio-Economic Planning Sciences, 68, 100697.
    Lowalekar, H., & Ravichandran, N. (2017). A combined age‐and‐stock‐based policy for ordering blood units in hospital blood banks. International Transactions in Operational Research, 24(6), 1561-1586.
    Meisel, F., & Bierwirth, C. (2014). The design of Make-to-Order supply networks under uncertainties using simulation and optimisation. International Journal of Production Research, 52(22), 6590-6607.
    Osorio, A. F., Brailsford, S. C., & Smith, H. K. (2015). A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 53(24), 7191-7212.
    Osorio, A. F., Brailsford, S. C., Smith, H. K., Forero-Matiz, S. P., & Camacho-Rodríguez, B. A. (2017). Simulation-optimization model for production planning in the blood supply chain. Health care management science, 20(4), 548-564.
    Paterson, C., Kiesmüller, G., Teunter, R., & Glazebrook, K. (2011). Inventory models with lateral transshipments: A review. European Journal of Operational Research, 210(2), 125-136.
    Perera, G., Hyam, C., Taylor, C., & Chapman, J. F. (2009). Hospital blood inventory practice: the factors affecting stock level and wastage. Transfusion medicine, 19(2), 99-104.
    Pierskalla, W. P., & Roach, C. D. (1972). Optimal issuing policies for perishable inventory. Management Science, 18(11), 603-614.
    Pirabán, A., Guerrero, W. J., & Labadie, N. (2019). Survey on blood supply chain management: Models and methods. Computers & Operations Research, 112, 104756.
    Pourhejazy, P., & Kwon, O. K. (2016). The new generation of operations research methods in supply chain optimization: A review. Sustainability, 8(10), 1033.
    Rajendran, S., & Ravindran, A. R. (2019). Inventory management of platelets along blood supply chain to minimize wastage and shortage. Computers & Industrial Engineering, 130, 714-730.
    Sadeghi, J., Sadeghi, S., & Niaki, S. T. A. (2014). A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-II with tuned parameters. Computers & Operations Research, 41, 53-64.
    Seidscher, A., & Minner, S. (2013). A Semi-Markov decision problem for proactive and reactive transshipments between multiple warehouses. European Journal of Operational Research, 230(1), 42-52.
    Sirelson, V., & Brodheim, E. (1991). A computer planning model for blood platelet production and distribution. Computer methods and programs in biomedicine, 35(4), 279-291.
    Stanger, S. H., Wilding, R., Hartmann, E., Yates, N., & Cotton, S. (2013). Lateral transshipments: an institutional theory perspective. International Journal of Physical Distribution & Logistics Management, 43(9), 747-767.
    Su, Y., & Sun, W. (2018). Analyzing a closed-loop supply chain considering environmental pollution using the NSGA-II. IEEE Transactions on Fuzzy Systems, 27(5), 1066-1074.
    World Health Organization. (2022, June 1). Blood Transfusion .World Health Organization. https://www.who.int/news-room/facts-in-pictures/detail/blood-transfusion
    Yen, G. G., & He, Z. (2013). Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 18(1), 131-144.
    Zhang, F., Johnson, D., Johnson, M., Watkins, D., Froese, R., & Wang, J. (2016). Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain. Renewable Energy, 85, 740-748.
    Zhou, D., Leung, L. C., & Pierskalla, W. P. (2011). Inventory management of platelets in hospitals: Optimal inventory policy for perishable products with regular and optional expedited replenishments. Manufacturing & Service Operations Management, 13(4), 420-438.
    Zhou, Y., Zou, T., Liu, C., Yu, H., Chen, L., & Su, J. (2021). Blood supply chain operation considering lifetime and transshipment under uncertain environment. Applied Soft Computing, 106, 107364.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE