| 研究生: |
彭彥銘 Peng, Yen-Ming |
|---|---|
| 論文名稱: |
電磁閥控制電路之設計與應用 Design and Application of Control circuit on Solenoid valve |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 太空系統工程研究所 Institute of Space Systems Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 電磁閥 、控制電路 、電路設計 、階梯降壓 、銲接實作 |
| 外文關鍵詞: | solenoid valve, control circuit, electronic circuit design, stair-shaped voltage, soldering practice |
| 相關次數: | 點閱:52 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當今工業設備系統中,電磁閥作為電控流道的主要設備,其功耗除了自身已定的性能之外,本研究提供另一種可降低功耗的方法。藉由調變電磁閥負載電壓的方式,探討最佳功耗與流量的關係,並在明確的電路需求下,參考現行業界的控制電路專利,根據基本的電子元件屬性與電路設計原則,搭建一塊能因應不同電磁閥性能、流道屬性的控制電磁閥之控制電路。
本研究以現行專利出發,了解其電磁閥控制方法,推導電路邏輯順序,明白各個電子元件之應用方法,建立四個核心設計方向(電源電路設計、隔離電路設計、電晶體組合電路設計、延遲電路設計),逐步搭建並開發出一款控制電路,最後配合電磁閥進行實測,量取功耗差異,驗證負載電壓與流量的關係。
本研究以基本的電子學原理與電子元件逐步搭建控制電路,展示工程人員進行硬體開發的「無到有」過程,在此階段的雛型體電路是建立工程人員在開發上的信心,以此動力讓工程人員邁向「有到精」。
In today's industrial equipment systems, solenoid valves are the leading equipment for electronically controlled flow channels. This study provides a method to reduce power consumption based on the existing performance of the solenoid valve. The relationship between the optimal power consumption and flow rate is explored by adjusting the solenoid valve's load voltage. Build a control circuit of the solenoid valve under precise circuit requirements. The control circuit can also be applied to different solenoid valves and flow systems. The control circuit is built by referring to the patents made and used in the industry, the basic electronic components, and circuit design principles.
1. Valve, A. Types of valve bodies and their specifications. Available from: https://www.actuation.co.uk/valve-body-types/.
2. inox-tek. What is Valve? | Basics of Valves. 2023 2023/08/10; Available from: https://www.inox-tek.com.tw/en/new/what-is-valve.
3. CORPORATION, T. Types of Manual Valves. Available from: https://www.tlv.com/steam-info/steam-theory/other/types-of-valves.
4. GmbH, S.S.C.S. Ball Sector Valve 4030. Available from: https://controlsystems.schubert-salzer.com/en/ball-sector-valves/type-1/4030/.
5. Rybarczyk, D., Concept and modelling of the electrohydraulic valve with DC and stepper motors. MATEC Web Conf., 2019. 252: p. 06003.
6. Bianculli, A.J., Stepper Motors - Application and Selection. Ieee Spectrum, 1970. 7(12): p. 25-+.
7. Chen, C.-P. and M.-H. Chiang, Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS. Applied Sciences, 2018. 8(4): p. 639.
8. 3 - Isolating valves, in Handbook of Valves and Actuators, B. Nesbitt, Editor. 2007, Butterworth-Heinemann: Oxford. p. 81-130.
9. André, P., A.R. Bastos, and R. Ferreira. Faraday’s law of induction: from classroom to kitchen. 2021 2021/03/31; Available from: https://www.scienceinschool.org/article/2021/faradays-law-induction-classroom-kitchen/.
10. omron. What are the basics of an electrical relay? ; Available from: https://components.omron.com/us-en/products/basic-knowledge/relays/basics.
11. Teja, R. What Is Relay? How It Works? Types, Applications, Testing. 2024 2024/09/11; Available from: https://www.electronicshub.org/what-is-relay-and-how-it-works/.
12. Sinclair, I., Chapter 6 - Inductive devices, in Passive Components for Circuit Design, I. Sinclair, Editor. 2001, Newnes: Oxford. p. 158-189.
13. Bishop, A., Solid-state relay handbook with applications. 1st ed. 1986, Indianapolis, IN, USA: H.W. Sams.
14. bri_huang. Logic Levels. Available from: https://learn.sparkfun.com/tutorials/logic-levels/all.
15. National_Instruments. Digital States, Voltage Levels, and Logic Families. 2024 2024/04/23; Available from: https://www.ni.com/en/shop/data-acquisition/measurement-fundamentals/digital-states-voltage-levels-logic-families.html?srsltid=AfmBOoqynTmgCUURqeX3p-SAQU2WVQrOBY1D4k1Lwy7qcLFjLv82TTts.
16. 蒲友強, 一種電磁閥控制系統. 2021, 昶艾科技(成都)有限公司: 中國大陸.
17. 深野喜弘;生出滋春;羽藤隆祥;小川英則, 電磁閥驅動電路、電磁閥,以及電磁閥驅動方法. 2010, SMC股份有限公司: 台灣.
18. Hofmann, M.B. Designing a power-saving solenoid driver: Design concepts. 2022 2022/09/19; Available from: https://www.embedded.com/designing-a-power-saving-solenoid-driver-design-concepts/.
19. Tan, M.L.P., G. Lentaris, and G.A.J. Amaratunga, Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET. Nanoscale Research Letters, 2012. 7.
20. Raphael, H. and A. Skjellnes, Inverter controlled characteristics of variable frequency induction motors. IFAC Proceedings Volumes, 1974. 7(2, Part 1): p. 713-727.
21. Upadhyay, J. What is a PWM signal? 2022 2022/02/14; Available from: https://www.circuitbread.com/ee-faq/what-is-a-pwm-signal.
22. 北京星河動力裝備科技有限公司, 電磁閥控制電路及電磁閥. 2023, 北京星河動力裝備科技有限公司: 中國大陸.
23. Dorf, R.C. and J.A. Svoboda, Introduction to Electric Circuits. 2010: John Wiley & Sons.
24. electronics-tutorials. RC Charging Circuit. Available from: https://www.electronics-tutorials.ws/rc/rc_1.html.
25. Meng, Y., R.N. Dean, and M. Adams, Improving the phase delay capacitive interface circuit technique using MOSFET switches. Measurement Science and Technology, 2020. 31(2).
26. da Silva, J.A.F. and C.L. do Lago, Electronic module for solenoid valve control. Quimica Nova, 2002. 25(5): p. 842-843.
27. INSTRUMENTS, T. DRV103: PMW Low-Side Driver for Solenoids, Coils, Valves, Heaters, Lamps datasheet (Rev. A). 2001; Available from: https://www.ti.com/lit/ds/symlink/drv103.pdf?ts=1741850523756&ref_url=https%253A%252F%252Fwww.google.com%252F.
28. Qiang, Y., et al., Research on Push-Pull Energy Storage PWM Power Drive of High-Power High-Response Proportional Solenoid. Ieee Access, 2023. 11: p. 42631-42643.
29. Zhang, J.H., et al., Investigation Into the Nonlinear Characteristics of a High-Speed Drive Circuit for a Proportional Solenoid Controlled by a PWM Signal. Ieee Access, 2018. 6: p. 61665-61676.
30. Hanna, K.T. optoisolator (optical coupler or optocoupler). Available from: https://www.techtarget.com/searchnetworking/definition/optoisolator.
31. Harris, M. Which Type of Opto-Isolator Is Right For Your Circuit? 2021 2021/09/13; Available from: https://resources.altium.com/p/which-type-opto-isolator-right-your-signal.
32. Schweber, B. The Flyback Power-Supply Architecture and Operation. 2019 2019/12/11; Available from: https://www.electronicdesign.com/12345/whitepaper/21808957/the-flyback-power-supply-architecture-and-operation.
33. Wilcher, D., Learn Electronics with Arduino. 2012: Apress.
34. Crecraft, D. and S. Gergely, Analog Electronics: Circuits, Systems and Signal Processing. 2002: Butterworth-Heinemann.
35. Gupta, K.M. and N. Gupta, Different Types of Diodes, Ideal and Real Diodes, Switching Diodes, Abrupt and Graded Junctions, in Advanced Semiconducting Materials and Devices, K.M. Gupta and N. Gupta, Editors. 2016, Springer International Publishing: Cham. p. 235-259.
36. EletronicsTutorials. Optocoupler Tutorial. Available from: https://www.electronics-tutorials.ws/blog/optocoupler.html.
37. Raymond Mack, S.M., Marty Brown, Basic Switching Circuits. 2008.
38. Keeping, S. Understanding the Advantages and Disadvantages of Linear Regulators. 2012; Available from: https://web.archive.org/web/20160923050124/http://www.digikey.com/en/articles/techzone/2012/may/understanding-the-advantages-and-disadvantages-of-linear-regulators#.
39. Brown, M., Chapter 1 - An Introduction to the Linear Regulator, in Power Sources and Supplies, M. Brown, Editor. 2008, Newnes: Burlington. p. 1-12.
40. Mammano, R. Switching Power Supply Topology Voltage Mode vs. Current Mode. Available from: https://www.ti.com/lit/an/slua119/slua119.pdf.
41. Mack, R., Chapter 2 - Basic Switching Circuits, in Power Sources and Supplies, M. Brown, Editor. 2008, Newnes: Burlington. p. 13-28.
42. Shkuratov, S.I., et al., High-current and high-voltage pulsed testing of resistors. Ieee Transactions on Plasma Science, 2000. 28(5): p. 1607-1614.
43. byjus. What is a transistor? ; Available from: https://byjus.com/jee/transistor/.
44. Zafar, S., M.H. Lu, and A. Jagtiani, Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors. Scientific Reports, 2017. 7.
45. Alexander, C.K. and M.N.O. Sadiku, Fundamentals of Electric Circuits. 2003: McGraw-Hill.
46. INSTRUMENTS, T. LM2576xx Series SIMPLE SWITCHER Power Converter 3-A Step-Down Voltage Regulator. 2023/03; Available from: https://www.ti.com/document-viewer/LM2576/datasheet#GUID-CF684927-D9B7-48C1-83DE-F07F8A98200B/GUID-D98C5196-F13F-4860-B5AA-156D7C987D60.
47. INSTRUMENTS, T. LM2591HV SIMPLE SWITCHER Power Converter 150 kHz 1A Step-Down Voltage Regulator. 2016/05; Available from: https://www.ti.com/lit/ds/symlink/lm2591hv.pdf?ts=1742882311054&ref_url=https%253A%252F%252Fwww.mouser.kr%252F.
48. INSTRUMENTS, T. LM2596 SIMPLE SWITCHER 4.5V to 40V, 3A Low Component Count Step-Down Regulator. 2023/03; Available from: https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1742870572878&ref_url=https%253A%252F%252Fwww.mouser.kr%252F.
49. INSTRUMENTS, T. LM340, LM340A and LM7805 Family Wide VIN 1.5-A Fixed Voltage Regulators. 2016/09; Available from: https://www.ti.com/document-viewer/LM7800/datasheet#specifications-snosbt07790/SNOSBT07790.
50. TOSHIBA. Basic Characteristics and Application Circuit Design of IC Couplers for Gate Drive of Power Devices. 2019/06/01; Available from: https://toshiba.semicon-storage.com/info/application_note_en_20190601_AKX00731.pdf?did=65813.
51. Williams, J., High-voltage, low-noise dc/dc converters. Edn, 2008. 53(16): p. 59-+.
52. PYM, DACS. 2025; Available from: https://drive.google.com/file/d/1GhHYRzN9fygTrIXRK7mMOE66IRmJiXKu/view?usp=drive_link