簡易檢索 / 詳目顯示

研究生: 姜雪涵
Chiang, Hsueh-Han
論文名稱: Zn1-xMgxO及Zn1-yFeyO奈米柱之成長與特性分析
Growth and characterization of Zn1-xMgxO and Zn1-yFeyO nanorods
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 133
中文關鍵詞: 氧化鋅化學氣相沉積一維奈米結構奈米柱稀釋型磁性半導體
外文關鍵詞: ZnO, CVD, semiconductor
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文有兩大研究主題:第一部分為以三區溫控熱化學氣相沉積(thermal CVD)法成長Zn1-xMgxO奈米柱。第二部份則為以兩區溫控thermal CVD法成長Zn1-yFeyO奈米柱。

    一、以三區溫控thermal CVD法成長Zn1-xMgxO奈米柱
      本研究以(C5H7O2)2Zn以及(C5H7O2)2Mg有機金屬化合物做為反應前驅物,以熱化學氣相沉積法,於壓力200 torr,氧氣流量400 scm,以及高溫爐溫度為500℃之反應系統中,在Si(100)基板上成長Zn1-xMgxO(x0.17)奈米柱。利用改變Zn、Mg前驅物之揮發溫度,以及盛裝Zn、Mg有機化合物內徑尺寸大小的方法,可調控生成Zn1-xMgxO奈米柱之鎂摻雜濃度。而由XRD及TEM分析結果得生成奈米柱為單晶hexagonal結構,並無MgO或金屬Mg的分離相產生,且具有c-軸優勢位向之成長。當Zn1-xMgxO奈米柱鎂含量升高時,其近能隙邊緣發光峰(near-band-edge emission)會有藍位移的現象發生,由變溫PL分析可知,在低溫環境下,隨鎂含量的提升,Zn1-xMgxO奈米柱發光特性由LX2所主導之比例愈重。

    二、以兩區溫控thermal CVD法成長Zn1-yFeyO奈米柱
      本研究以(C5H7O2)2Zn以及C12H21FeO6有機金屬化合物做為反應前驅物,以熱化學氣相沉積法,於壓力200 torr,氧氣流量400 scm,氮氣流量100 sccm,化合物揮發加熱溫度133℃,以及高溫爐溫度為515℃之反應系統中,在Si(100)基板上成長Zn1-yFeyO奈米柱。奈米柱鐵含量可由改變盛裝鐵反應物器皿內徑大小做調控。

     Two main research subjects are presented in this thesis. Part is Ι“Growth of Zn1-xMgxO naorods by three-temperature-zone thermal chemical vapor deposition”. Part Ⅱ is “Growth of Zn1-yFeyO naorods by two- temperature-zone thermal chemical vapor deposition”.

    Part Ι: Growth of Zn1-xMgxO nanorods by three- temperature-zone thermal chemical vapor deposition.
     Zn1-xMgxO nanorods were grown on Si(100) substrate by CVD system under the following conditions: pressure, temperature of the high-temperature furnace, and O2 flow rate of 200torr, 500℃,and 400sccm, respectively. Zn(C5H7O2)2 and Mg(C5H7O2)2 are used as zinc and magnesium sources. Mg contents in Zn1-xMgxO nanorods are adjustable by varying the vaporing temperature of the Zn and Mg metalorganic precursors and the diameters of the Zn and Mg source containers. XRD and TEM analyses show that Zn1-xMgxO nanorods are single crystalline wurtzite structure , and Zn1-xMgxO nanorods are preferentially oriented in c-axis. There is no segregated phase such as MgO or metal Mg appearing throughout the rods. A blue shift of the PL near-band-edge emission measured at room temperature with increasing Mg content in nanorods is observed. Temperature-dependence PL analyses show the luminescence of LX2 dominates the PL spectra of the Zn1-xMgxO nanorods at low temperature when Mg contents increase.

    Part Ⅱ : Growth of Zn1-yFeyO nanorods by two- temperature-zone thermal chemical vapor deposition.
     Zn1-yFeyO nanorods were grown on Si(100) substrates by CVD system under the following condition: pressure, temperature of the high-temperature furnace, temperature of the metalorganic sources, N2 flow rate, and O2 flow rate of 200℃, 515℃, 133℃, 100sccm, and 400sccm, respectively. Zn(C5H7O2)2 and C15H21FeO6 are used as zinc and iron sources. Fe contents in Zn1-yFeyO nanorods are adjustable by varying the diameter of the Fe source container.

    總目錄 中文摘要……………………………………………………………………………………Ι Abstract……………………………………………………………………………………III 致謝………………………………………………………………………………………ΙⅤ 總目錄………………………………………………………………………………………ⅤΙ 表目錄………………………………………………………………………………………ΙX 圖目錄…………………………………………………………………………………………X 第一章 緒論………………………………………………………………………………………………1 1-1 前言….……………………………………………………………………………………1 1-2 奈米科技(nanotechnology)……………………………………………………………2 1-3 氧化鋅(ZnO)………………………………………………………………………………4 1-4 研究動機…………………………………………………………………………………9 第二章 理論基礎與文獻回顧…………………………………………………………………10 2-1 成長一維奈米結構之方法………………………………………………………………10 2-1.1 Vapor-Liquid-Solid(VLS)機制………………………………………………………10 2-1.2 Solution-Liquid-Solid Method……………………………………………………12 2-1.3 硬模版(Hard template)輔助成長奈米一維結構……………………………………13 2-1.4 軟模版輔助成長一維奈米材料………………………………………………………14 2-1.5 螺旋差排導致一維成長(Screw dislocation growth)……………………………15 2-1.6 氧化物促進一維奈米線成長(Oxide assisted growth)……………………………16 2-1.7 非等方向性奈米晶體之成長法………………………………………………………17 2-2 化學氣相沉積(Chemical Vapor Deposition)…………………………………………18 2-3 ZnMgO文獻回顧……………………………………………………………………………20 2-3.1 ZnMgO薄膜………………………………………………………………………………20 2-3.2 ZnMgO一維奈米結構……………………………………………………………………32 2-4 磁性理論…………………………………………………………………………………35 2-4.1 磁性的來源……………………………………………………………………………35 2-4.2 磁性物質的種類………………………………………………………………………35 2-4.3 磁滯曲線………………………………………………………………………………39 2-5 以氧化鋅為主(ZnO-based)之稀釋型鐵磁性半導體…………………………………41 2-5.1 以鈷(Co)元素摻雜氧化鋅薄膜.……………………………………………………41 2-5.2 以錳(Mn)元素摻雜氧化鋅薄膜………………………………………………………49 2-5.3 以鐵(Fe)元素摻雜氧化鋅薄膜………………………………………………………52 2-5.4 以氧化鋅為主(ZnO-based)之稀釋型鐵磁性半導體一維奈米結構..……………61 第三章 實驗步驟與分析系統………………………………………………………………65 3-1 實驗流程圖………………………………………………………………………………65 3-2 實驗設備…………………………………………………………………………………66 3-2.1 實驗用氣體及藥品……………………………………………………………………66 3-2.2 實驗用基板……………………………………………………………………………66 3-2.3 Thermal CVD反應系統儀器設備……………………………………………………66 3-3 實驗步驟…………………………………………………………………………………68 3-3.1 實驗前處理步驟………………………………………………………………………68 3-3.2 Thermal CVD反應成長步驟…………………………………………………………68 3-4 分析儀器…………………………………………………………………………………70 3-4.1 掃描式電子顯微鏡(SEM)……………………………………………………………70 3-4.2 X光繞射分析儀(XRD)…………………………………………………………………71 3-4.3 穿透式電子顯微鏡(TEM)………………………………………………………………72 3-4.4 光子激發光譜儀(Photoluminescence)……………………………………………73 3-4.5 電子微探分析儀(Electron Probe Microanalyzer)………………………………74 第四章 熱化學氣相沉積(thermal CVD)法成長Zn1-xMgxO奈米柱…………………………75 4-1 製程參數及實驗方法……………………………………………………………………75 4-2 Zn1-xMgxO奈米柱之成長………………………………………………………………77 4-2.1 鋅有機金屬化合物蒸發溫度(TZn)之效應…………………………………………77 4-2.2 鎂有機金屬化合物蒸發溫度(TMg)之效應……………………………………………83 4-2.3 有機金屬化合物盛裝器皿內徑尺寸之效應…………………………………………88 4-3 Zn1-xMgxO奈米柱結構分析……………………………………………………………92 4-3.1 X光繞射(XRD)分析……………………………………………………………………92 4-3.2 穿透式電子顯微(TEM)分析……………………………………………………………95 4-4 Zn1-xMgxO奈米柱光學性質分析-光激發光譜(Photoluminescence)分析…………………………………………………………………………………………………98 4-5 結論………………………………………………………………………………………109 第五章 熱化學氣相沉積(thermal CVD)法成長Zn1-yFeyO奈米柱………………………………………………………………………………………………110 5-1 製程參數及實驗方法……………………………………………………………………110 5-2 Zn1-yFeyO奈米柱之成長…………………………………………………………………111 5-3 Zn1-yFeyO奈米柱結構分析-X光繞射(XRD)分析…………………………………………116 5-4 結論…………………………………………………………………………………………123 第六章 總結論…………………………………………………………………………………124 第七章 參考文獻………………………………………………………………………………125

    [1]http://www.sinorama.com.tw/ch/print_issue.php3?id=200319201006c.txt&mag=past
    [2] R. Waser, Nanoelectronics and Information Technology, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
    [3] M. Baumann, Learning From The Lotus Flower –Selfcleaning Coatings On Glass, Glass Processing Days, 330 (2003).
    [4] K. Akamatsu, and S. Deki, J. Mater. Chem., 8 (1998) 637.
    [5] WTEC Inc. report, Nanostructure Science and Technology: R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices(1998).
    [6] D. S. King, R. M. Nix, J. Catal., 160(1996), 76.
    [7] T. Minami, Mater. Res. Soc. Bull., 25(2000), 38.
    [8] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett., 70(1997), 2230.
    [9] J. Zhong, A. H. Kitai, P. Mascher, W. Puff, J. Electrochem. Soc., 140(1993), 3644.
    [10] P. Zu, Z. K. Tang, G. K. L Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun., 103(1997), 459.
    [11] H. Co, J. Y. Xu, E. W. Seelig, R. P. H. Chang, Appl. Phys. Lett., 76(2000), 2997.
    [12] S. R. Morrison, Sensors and Actuators, 12(1987), 425.
    [13] J. C. Anderson, Journal of Vaccum Science Technology, A4(1986), 610.
    [14] U. Lampe, Ceramics Bulletin, 69(1990), 1959.
    [15] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J .Appl. Phys., 84(1998), 3912.
    [16] A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, H. Koinuma, Mater. Sci. Eng. B., 56(1998), 263.
    [17] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth., 130(1993), 269.
    [18] R. A. P. O. Well, W. E. Spicer, J. C. McMenamin, Phys. Rev. B., 6(1972), 3056.
    [19] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li , L. G. Salamanca-Riba, A. A. Iliadis, K. A. Jones, Appl. Phys. Lett., 73(1998), 348.
    [20] D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett., 82(1999), 2552.
    [21]B. J. Lin, S. H. Bae, S. Y. Lee, S. Im, Mater. Sci. Eng. B., 71(2000), 301.
    [22] C. G. Van de Walle, Phys. Stat. Solidi. B., 299(2002), 221.
    [23] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov, Phys. Rev. Lett., 88(2002), 045504.
    [24] B. J. Jin, S. Im, S.Y. Lee, Thin Solid Films, 366(2000), 107.
    [25] E. G. Bylander, J. Appl. Phys., 49(1978), 1188.
    [26] N. Riehl, O. Ortman, Z. Elektrochem., 60(1952), 149.
    [27] N.Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, Appl. Phys.Lett., 81(2002), 622.
    [28] H. J. Egelhaaf, D. Oelkrug, J. Cryst. Growth., 161(1996), 190.
    [29] D. Hahn, R. Nink, Phys. Cond. Matt., 3(1965), 311.
    [30] M. Liu, A. H. Kitai, P. Mascher, J. Lumin., 54(1992), 35.
    [31] http://ncsr.csci-va.com/materials/zno.asp.
    [32] A. R. Hutson, Phys. Rev., 108(1957), 222.
    [33] D. Florescu, L. G. Mourok, F. H. Pollack, D. C. Look, G. Cantwell, X. Li, J. Appl. Phys., 91(2002), 890.
    [34] Y. Kanai, Jpn. J. Appl. Phys., 30(1991), 703.
    [35] Y. Kanai, Jpn. J. Appl. Phys., 30(1991), 2021.
    [36] J. A. Savage, E. M. Dodson, J. Mater. Sci., 4(1969), 809.
    [37] A. Valentini, F. Quaranta, M. Rossi, G. Battaglin, J. Vac. Sci. Technol. A., 9(1991), 286.
    [38] A. Onedera, N. Tamaki, K. Jin, H. Yamashita, Jpn. J. Appl. Phys., 36(1997), 6008.
    [39] G. Weise, E. M. Fechner, G. Owsian, D. Kraut, Thin Solid Films, 32(1976), 87.
    [40] P. H. Kasai, Phys. Rev., 130(1963), 989.
    [41]H. Wolk, S. Deubler, D. Forkel, H. Foettinger, M. Iwatschenko-Borho, F. Meyer, M. Renn, W. Witthuhn, R. Helbig, Mater. Sci. Forum., 10–12 (Part 3)(1986), 863.
    [42] T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, T. Ito, Jpn. J. Appl. Phys., 40(2001), 5615.
    [43] C. H. Park, S. B. Zhang, S. H. Wei, Phys. Rev. B., 66(2002), 073202.
    [44] T. Yamamoto, H. K. Yoshida, Jpn. J. Appl. Phys., 38(1999), L166.
    [45] N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, D. C. Look, Appl. Phys. Lett., 80(2002), 1334.
    [46] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Jpn. J. Appl. Phys., 36(1997), L1453.
    [47] X. L. Guo, H. Tabata, T. Kawai, J. Cryst. Growth., 223(2001), 135.
    [48] X. L. Guo , H. Tabata, T. Kawai, Optical Materials, 19(2002), 229.
    [49] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, J. Cryst. Growth., 209(2000), 526.
    [50] Y. Yan, S. B. Zhang, S. T. Pantelides, Phys. Rev. Lett., 86(2001), 5723.
    [51] D.C. Look, D.C. Reynolds, C.W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett., 81(2002), 1830.
    [52] Y. Wu, P. Yang, Chem. Mater., 12(2000), 605.
    [53] Younan Xia and Peidong Yang, Adv. Mater. 15(2003), 353.
    [54] A. P. Alivisatos et al., Nature, 404(2000), 59.
    [55] A. P. Alivisatos et al., J. Am. Chem. Soc., 122(2000), 12700.
    [56] X. S. Peng et al., Appl. Phys., A 74(2001), 437.
    [57] X. S. Peng et al., J. Mater. Chem., 12(2002), 1602.
    [58] S. T. Lee et al., J. Mater. Res., 14(1999), 4503.
    [59] J.-J. Wu, S.-C. Liu, Adv. Mater., 14(2002), 215.
    [60] J.-J. Wu, S.-C. Liu, J. Mater. Chem., 12(2002), 3125.
    [61] D. L. Smith, Thin Films by Chemical Vapor Deposition principle and practice, Mcgraw-Hill, USA (1995).
    [62] A. Ohtomo et al., Appl. Phys. Lett., 72(1998), 2466.
    [63] A. K. Sharma et al., Appl. Phys. Lett., 75(1999), 3327.
    [64] A. Ohtomo, et al., Appl. Phys. Lett., 75(1999), 4088.
    [65]Yuji Matsumoto et al., Jpn. J. Appl. Phys., L38(1999), 603-605.
    [66] K. Ip, Y. W. Heo, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett., 85(2004), 1169.
    [67] J Chen, W Z Shen, N B Chen, D JQiu, and H ZWu, J. Phys.: Condens. Matter, 15(2003), L475.
    [68] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, and T. Siegrist, Appl. Phys. Lett., 82(2003), 742.
    [69] W. Yang, R. D. Vispute and H. Shen, Appl. Phys. Lett., 82(2003), 3432.
    [70] J.H. Kang, Y.R. Park,and K.J. Kim, Solid State Communications, 115(2000), 127–130.
    [71] J. F. Muth and C. W. Teng, Appl. Phys. Lett., 76(2000), 979.
    [72] C. Bundesmann, N. Ashkenov,and G. Wagner, Appl. Phys. Lett., 81(2002), 2376.
    [73] R. Schmidt-Grund,and C.M. Herzinger, Thin Solid Films, 455-456(2004), 500-504.
    [74] Takahiro Nagata, Tamaki Shimura, Atsushi Ashida, Norifumi Fujimura,and Taichiro Ito, J. Cryst. Growth., 237–239(2002), 533–537.
    [75] K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, Appl. Phys. Lett., 85(2004), 1374.
    [76] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett., 84(2004), 3474.
    [77] O. Lopatiuk, W. Burdett, L. Chernyak et al., Appl. Phys. Lett., 86(2005), 012105-1.
    [78] Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, P.H. Fleming, Solid-State Electronics, 47(2003), 2269–2273.
    [79]Y. W. Heo, C. Abernathy, K. Pruessner, W. Sigmund, and D. P. Norton, J .Appl. Phys., 96(2004), 3424.
    [80] M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett., 86(2005), 143113.
    [81] B. D. Cullity, introduction to magnetic material, Wesley, 1972.
    [82] Chikazumi, S., 張喣,李學養合譯,磁性物理學,聯經公司出版,1981。
    [83] 張文成,唐敏注,張慶瑞,劉如熹,科學月刊,32(4),286,2001。
    [84] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett., 79(2001), 988.
    [85] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett., 78(2001), 3824.
    [86] W. Prellier, A. Fouchet, B. Mercey, C. Simon, B. Raveau, Appl. Phys. Lett., 82(2003), 3490.
    [87] K. Rode, A. Anane, R. Mattana, J. P. Contour, O. Durand, R. LeBourgeois, J. Appl. Phys., 93(2003), 7676.
    [88] J. H. Kim, H. Kim, D. Kim, Y. E. Ihm , W. K. Choo, Physica B, 327(2003), 304.
    [89] J. H. Kim, W. K. Choo, H. Kim, D. Kim,and Y. E. Ihm, J. Korean Phys. Soc., 42(2003), S258.
    [90] Y. Z. Yoo, T. Fukumura, Z. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow, H. Koinuma, J. Appl. Phys., 90(2001), 4246.
    [91] S. W. Lim, S. K. Hwang, J. M. Myoung, Solid State Commun., 125(2003), 231.
    [92] J. H. Kim, H. Kim, D. Kim, Y. E. Ihm, W. K. Choo, J. Appl. Phys., 92(2002), 6066.
    [93] H. J. Lee, S. Y. Jeong, C. R. Cho, C. H. Park, Appl. Phys. Lett., 81(2002), 4020.
    [94] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, Appl. Phys. Lett., 75(1999), 3366.
    [95] X. M. Cheng, C. L. Chien, J. Appl. Phys., 93(2003), 7876.
    [96] D. S. Kim, H. M. Kim, S. U. Yuldashev, S. J. Lee, T. W. Kang, D. Y. Kim, J. Korean Phys. Soc., 42(2003), S333.
    [97] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, J. Narayan, Solid State Commun., 121(2002), 371.
    [98] S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, S. Cho, Appl. Phys. Lett., 80(2002), 4561.
    [99] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida,and T. Ito, Physica E., 10(2001), 260.
    [100] H. Saeki , H. Tabata,and T. Kawai, Solid State Commun., 120(2001), 439.
    [101] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong, K. W. Rhie, Appl. Phys. Lett., 81(2002), 4212.
    [102] S. G. Yang, A. B. Pakhomov, S. T. Hung, C. Y. Wong, IEEE TRANSCATION ON MAGNETICS, 38(2002), 2877.
    [103] Tsung-Shune Chin et al., Appl. Phys. Lett., 85(2004), 621.
    [104] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegaw, S. Koshihara, H. Koinuma, Appl. Phys. Lett., 78(2001), 958.
    [105] X. M. Cheng, and C. L. Chien, J. Appl. Phys., 93(2003), 7876.
    [106] Nguyen Hoa Honga, and Virginie Brizé, Appl. Phys. Lett., 86(2005), 082505.
    [107] A. K. Pradhan, Kai Zhang, S. Mohanty, J. B. Dadson, and D. Hunter et al., Appl. Phys. Lett., 86(2005), 152511.
    [108] S-J. Han, J. W. Song, C.-H. Yang, S. H. Park, J.-H. Park, Y. H. Jeong, andK. W. Rhie, Appl. Phys. Lett., 81(2002), 4212.
    [109] Jeong Hyun Shim, Taesoon Hwang, Soonchil Lee, Jung Hye Park, Seung-Jin Han, and Y. H. Jeong, Appl. Phys. Lett., 86(2005), 082503.
    [110] Young Mok Cho, Woong Kil Choo, Hyojin Kim, Dojin Kim, and YoungEon Ihm, Appl. Phys. Lett. 80(2002), 3358.
    [111]E. Guzman et al., Ann. Phys., 13(2004), 57–58.
    [112] J. C. A. Huang et al., Appl. Phys. Lett., 85(2004), 3815.
    [113] S. W. Jung, W. I. Park, G. C. Yi, M. Kim, Adv. Mater., 15(2003), 1358.
    [114] Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, L. Li, C. P. Chen, R. M. Wang, J. Xu, D. P. Yu, Appl. Phys. Lett., 83(2003), 4020.
    [115]汪建民,材料分析,中國材料科學學會,台灣,1998。
    [116] B. Fultz, J. M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, Springer-Verlag Berlin Heidelberg (2001).
    [117] 呂登復,科儀新知,第六卷第三期,第七十五頁,1984。

    下載圖示 校內:2008-07-14公開
    校外:2008-07-14公開
    QR CODE