簡易檢索 / 詳目顯示

研究生: 陳士豪
Chen, Shih-Hao
論文名稱: 梁柱彎矩接頭高溫補強之數值模擬
Numerical Simulations for the High-Temperature Strengthening of Beam-to-Column Moment Connections
指導教授: 鍾興陽
Chung, Hsin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 259
中文關鍵詞: 高溫補強H形鋼構架懸垂效應耐火鋼彎矩接頭有限元素法
外文關鍵詞: High Temperature Strengthening, H-Shaped Steel Frame, Catenary Effect, Fire-Resistant Steel, Moment Connection, Finite Element Method
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用三維非線性有限元素程式模擬H形(H-Shaped)彎矩接頭鋼構架在高溫火害下之結構行為,並利用ISO 834升溫曲線將H形鋼構架進行統一升溫。本論文主要分為兩部份,首先進行H形鋼構架在高溫火害下參數比較之數值模擬,探討梁載重、梁長度、初始冷卻溫度、梁端軸向束制、梁端旋轉束制等五種參數對於H形彎矩接頭鋼構架在高溫火害下結構行為之影響,並觀察整體鋼構架在升溫過程中彎矩接頭受力變化的情形,以及鋼梁發生懸垂效應後,鋼梁與彎矩接頭的破壞模式,藉此瞭解梁柱彎矩接頭構架在高溫火害下的破壞機制;此外,本論文更利用此破壞機制研究所獲得之結論,積極利用耐火鋼和其他補強方法針對梁柱彎矩接頭構架進行高溫補強,並探討這些補強方法對於整體鋼構架耐火性能提升之可行性。研究結果顯示:加強梁柱彎矩接頭在高溫下的強度將可抑制鋼梁在高溫下的撓度,進而提高鋼梁進入懸垂效應的破壞溫度,直接提升鋼梁的耐火性能;本論文所研究的補強方式包括:梁段式補強、複合梁式補強、蓋板式補強、側板式補強、加勁板式補強等五種,數值模擬結果顯示:梁全段使用耐火鋼可達到最好的耐火能力,但在考慮成本下,採用部分耐火鋼梁段補強,可獲得較佳的經濟效益。

    This study employed three-dimensional nonlinear finite-element program to simulate the structural behaviors of H-shaped steel moment connection frames at elevated temperatures using ISO-834 temperature-time heating curve. There were two parts in this thesis. In the first part of this thesis, the numerical simulations of various parameter comparisons were implemented to investigate the influences of the five parameters, including beam loading, beam length, initial cooling temperature, axial restraint of beam and beam end rotational restraint, to the structural behaviors of H-shaped steel frames at elevated temperatures. The internal force variations of moment connections at elevated temperatures and the failure modes of moment connections after catenary effect were carefully examined to understand the failure mechanisms of steel moment connection frames in fire. In the second part of this thesis, the conclusions from failure mechanism study were utilized to strengthen the steel moment connections in high temperatures. The feasibility of using fire-resistant steel and the other high temperature strengthening methods to improve the fire-resistant performance of the whole steel frame were studied by finite element simulations. The numerical simulation results showed that strengthening the moment connection in high temperatures can reduce the beam deflection in high temperatures and increase the failure temperature and fire-resistant performance of steel beam. Five high temperature strengthening methods, including hybrid section method, hybrid beam method, cover plate method, side plate method and stiffness plate method, were considered in this thesis. The numerical simulation results showed that using fire-resistant steel for the whole beam can achieve the best fire-resistant performance. In order to reduce the cost, the more economical way can be attained by using fire-resistant steel in the two beam end sections.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 符號表 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 3 1.4 論文架構 4 第二章 文獻回顧 7 2.1 前言 7 2.2 鋼結構高溫火害之相關研究 7 2.2.1 鋼結構高溫參數比較之研究 7 2.2.2 梁柱接頭高溫火害之研究 9 第三章 有限元素相關理論 15 3.1 前言 15 3.2 工程與真實應力-應變轉換 15 3.3 非線性結構分析 18 3.4 接觸理論 19 3.5 疊代收斂性 21 3.6 PEEQ判斷準則 24 3.7 元素理論 25 第四章 H形鋼構架之高溫數值模擬 29 4.1 前言 29 4.2 基本假設 29 4.3 模型種類與編號 30 4.3.1 參數比較用之H形高溫鋼構架模型 30 4.3.2 高溫補強用之H形鋼構架模型 34 4.4 材料參數 39 4.4.1 鋼材介紹 39 4.4.2 彈性模數 40 4.4.3 柏松比 40 4.4.4 熱膨脹係數 41 4.4.5 塑性參數 41 4.5 分析步設定 42 4.5.1 參數比較模型分析步驟 42 4.5.2 H形鋼構架高溫補強模型分析步驟 42 4.6 接觸設定 43 4.7 邊界設定 44 4.7.1 力加載 44 4.7.2 邊界束制 45 4.7.3 溫度給定 48 4.8 網格設定 49 4.8.1 網格劃分 49 4.8.2 元素選擇 52 4.9 後處理 53 第五章 參數比較之模擬結果 81 5.1 前言 81 5.2 不同梁載重試體之模擬結果 81 5.2.1 試體P-LD-0.4MP-ISO 82 5.2.2 試體P-LD-0.6MP-ISO 82 5.2.3 試體P-LD-0.8MP-ISO 83 5.2.4 不同梁載重試體模擬結果之比較 84 5.3 不同梁長度試體之模擬結果 85 5.3.1 試體P-BL-6100-ISO 86 5.3.2 試體P-BL-8100-ISO 87 5.3.3 試體P-BL-10100-ISO 87 5.3.4 不同梁長度試體模擬結果之比較 88 5.4 不同初始冷卻溫度試體之模擬結果 90 5.4.1 試體P-IC-400-ISO 90 5.4.2 試體P-IC-500-ISO 91 5.4.3 試體P-IC-600-ISO 92 5.4.4 試體P-IC-650-ISO 93 5.4.5 不同初始冷卻溫度試體模擬結果之比較 94 5.5 不同梁端軸向束制試體之模擬結果 95 5.5.1 試體P-AR-1E4-ISO(0.6MP) 95 5.5.2 試體P-AR-1E5-ISO(0.6MP) 96 5.5.3 試體P-AR-1E6-ISO(0.6MP) 96 5.5.4 試體P-AR-1E7-ISO(0.6MP) 97 5.5.5 試體P-AR-1E4-ISO(MP) 98 5.5.6 試體P-AR-1E5-ISO(MP) 98 5.5.7 試體P-AR-1E6-ISO(MP) 99 5.5.8 試體P-AR-1E7-ISO(MP) 99 5.5.9 不同梁端軸向束制試體模擬結果之比較 100 5.6 不同梁端旋轉束制試體之模擬結果 101 5.6.1 試體P-RR-5.51-ISO(0.6MP) 101 5.6.2 試體P-RR-8.7-ISO(0.6MP) 102 5.6.3 試體P-RR-17.13-ISO(0.6MP) 103 5.6.4 試體P-RR-76.75-ISO(0.6MP) 103 5.6.5 試體P-RR-5.51-ISO(MP) 104 5.6.6 試體P-RR-8.7-ISO(MP) 105 5.6.7 試體P-RR-17.13-ISO(MP) 105 5.6.8 試體P-RR-76.75-ISO(MP) 106 5.6.9 不同梁端旋轉束制試體模擬結果之比較 107 5.7 參數比較之總結 108 第六章 H形鋼構架高溫補強之模擬結果 137 6.1 前言 137 6.2 未補強試體(BN-ISO)之模擬結果 137 6.3 梁段式補強試體之模擬結果 139 6.3.1 試體S-BH-0.1L-ISO 139 6.3.2 試體S-BF-ISO 140 6.4 複合梁式補強試體之模擬結果 142 6.4.1 試體S-BH-WBF-ISO 142 6.4.2 試體S-BH-FGF-ISO 143 6.5 蓋板式補強試體之模擬結果 144 6.5.1 試體S-BN-CPN-ISO 144 6.5.2 試體S-BN-CPF-ISO 146 6.6 側板式補強試體之模擬結果 147 6.6.1 試體S-BN-SPN300-ISO 147 6.6.2 試體S-BN-SPF300-ISO 148 6.6.3 試體S-BN-SPN500-ISO 150 6.6.4 試體S-BN-SPF500-ISO 151 6.6.5 試體S-BN-SPN810-ISO 153 6.6.6 試體S-BN-SPF810-ISO 154 6.7 加勁板式補強試體之模擬結果 155 6.7.1 試體S-BN-SFN4-ISO 155 6.7.2 試體S-BN-SFF4-ISO 157 6.8 梁破壞溫度之判斷準則 158 6.9 討論 160 6.9.1 梁段式補強試體模擬結果之比較 160 6.9.2 複合梁式補強試體模擬結果之比較 162 6.9.3 蓋板式補強試體模擬結果之比較 163 6.9.4 側板式補強試體模擬結果之比較 165 6.9.5 加勁板式補強試體模擬結果之比較 166 6.9.6 破壞溫度之提升 168 6.9.7 各試體補強後之經濟效益 169 第七章 結論與建議 251 參考文獻 255 自述 259

    ABAQUS HTML Documentation, User’s Manual Version 6.8, Dassault Systèmes Simulia Corp., Providence, RI, USA, (2008).

    British Standard Institution (BSI), “British Standard BS476, Part 20: Method for Determination of the Fire Resistance of Elements of Construction”, London, (1987).

    Chung H.Y., Lee C.H., Su W.J., and Lin R.Z., “Application of Fire-Resistant Steel to Beam-to-Column Moment Connections at Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 66, pp.289-303, (2010).

    Eurocode-3, “Design of Steel Structure-Part1.2:General Rules-Structural Fire Design,” ENV1993-1-2, (1995).

    Engelhardt M.D. and Hu G., “Investigations on the Behavior of Steel Beam End Framing Connections in Fire,” Proceedings of NSF Engineering Research and Innovation Conference, (2009).

    ISO 834-1, “Fire-Resistance Tests, Elements of Building Construction-Part 1:General Requirements,” (1999).

    Kodur V.K.R. and Dwaikat M.M.S., “Response of Steel Beam-Columns Exposed to Fire,” Journal of Engineering Structures, Vol. 31, pp.369-379, (2009).

    Liu T.C.H., Fahad M.K., and Davies J.M., “Experimental Investigation of Behaviour of Axially Restrained Steel Beams in Fire,” Journal of Constructional Steel Research, Vol. 58, pp.1211-1230, (2002).

    Luecke W.E., McCowan C.N., and Banovic S.W., “Mechanical Properties of Structural Steels,” Federal Building and Fire Safety Investigation of the World Trade Center Disaster, National institute of Standards and Technology, (2005).

    Newman G.M., Robinson J.T., and Bailey C.G., “Fire Safe Design: A New Approach to Multi-Storey Steel Framed Buildings,” The Steel Construction Institute, (2000).

    Qian Z.H., Tan K.H., and Burgess I.W., “Behavior of Steel Beam-to-Column Joints at Elevated Temperature: Experimental Investigation,” Journal of Structural Engineering, Vol. 134, No.5, pp.713-726, (2008).

    Sarraj M., Burgess I.W., Davison J.B., and Plank R.J., “Finite Element Modelling of Fin Plate Steel Connections in Fire,” Fire Safety Journal, Vol. 42, pp.408-415, (2007).

    Tan K.H. and Huang Z.F., “Structural Responses of Axially Restrained Steel Beams with Semirigid Moment Connection in Fire,” Journal of Structural Engineering , Vol. 131, No. 4, pp.541-551, (2005).

    Yin Y.Z. and Wang Y.C., “A Numerical Study of Large Deflection Behaviour of Restrained Steel Beams at Elevated Temperatures,” Journal of Constructional Steel Research , Vol. 60, pp.1029-1047, (2004).

    Yin Y.Z. and Wang Y.C., “Analysis of Catenary Action in Steel Beams Using a Simplified Hand Calculation Method, Part 1: Theory and Validation for Uniform Temperature Distribution,” Journal of Constructional Steel Research, Vol. 61, pp.183-211, (2005).

    中華民國結構工程學會,「鋼結構設計手冊(極限設計法)」,科技圖書股份有限公司,(2005)。

    方朝俊,「火害對耐火鋼構件銲接及栓接行為影響」,國立台灣科技大學營建工程學系,台北 (2000)。

    何明錦、陳生金,「鋼結構梁柱接頭高溫載重行為研究」,內政部建築研究所研究報告,(2005)。

    林子賓,「高溫下螺栓孔承壓能力之研究」,國立成功大學土木工程學系,台南 (2006)。

    林日增,「H型梁-箱型柱耐火彎矩接頭高溫行為之數值模擬」,國立成功大學土木工程學系,台南 (2008)。

    林振吉,「H型梁-箱型柱彎矩接頭之火害行為研究」,國立成功大學土木工程學系,台南 (2008)。

    吳家豪,「補強式梁柱韌性接頭高溫抗彎行為之數值模擬」,國立成功大學土木工程學系,台南 (2009)。

    洪健晉,「高強度螺栓於高溫下之抗剪行為量測與數值模擬」,國立成功大學土木工程學系,台南 (2008)。

    陳景智,「實尺寸H型鋼構架高溫火害行為之數值模擬」,國立成功大學土木工程學系,台南 (2009)。

    陳諺輝,「螺栓孔於高溫下承壓行為之量測與數值模擬」,國立成功大學土木工程學系,台南 (2006)。

    愛發股份有限公司編著,「ABAQUS實務入門引導」,全華科技圖書股份有限公司印行,台北 (2005)。

    蕭博勳,「鋼結構抗彎梁柱接頭在高溫環境下之行為研究」,國立成功大學土木工程學系,台南 (2007)。

    蘇文傑,「實尺寸H型梁-箱型柱彎矩接頭之火害實驗研究」,國立成功大學土木工程學系,台南 (2008)。

    無法下載圖示 校內:2015-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE