| 研究生: |
沈德依 Shen, Te-Yi |
|---|---|
| 論文名稱: |
台灣停經婦女心血管危險因子長期追蹤研究 LONGITUDINAL STUDY OF CARDIOVASCULAR RISK FACTORS ACROSS THE MENOPAUSAL TRANSITION IN TAIWANESE WOMEN |
| 指導教授: |
余聰
Yu, Tsung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 公共衛生學系 Department of Public Health |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 停經年齡 、心臟血管疾病危險因子 、長期追蹤資料分析 |
| 外文關鍵詞: | age at menopause, CVD risk factors, longitudinal data analysis |
| 相關次數: | 點閱:155 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
停經過渡期對女性來說是一段重要的生命歷程。在此期間,與停經相關的生理變化與老化有關的變化同時出現,增加發生心臟代謝疾病的風險。因此,了解停經和老化是獨立或共同對 CVD 危險因子變化的影響相當重要。為了釐清其間的複雜性,本論文的目的是研究停經年齡的危險因子及其對健康的影響,並應用長期追蹤資料分析方法研究心血管疾病危險因子的長期變化及其與台灣女性停經年齡的關係。
自然停經年齡 (ANM) 及其相關因子引起公共衛生的關注,因為ANM可能是晚年心臟代謝疾病風險的指標。研究發現ANM因地理區域分布和種族而不同。在本論文的第二章中,我們分析了來自橫斷面調查(國民營養健康狀況變遷調查)的4111名35歲及以上台灣女性的數據。利用Cox比例風險模型研究ANM 與其相關因子的關聯性,並使用生命表方法估計ANM中位數。研究結果顯示,受過高等教育、已婚且曾懷孕過的較年輕出生世代的女性可能比較晚停經。因此,ANM可能受到早期與所經歷的社會經濟/營養狀況的影響。
在第三章節中,我們分析台灣美兆健康數據庫的 36,931 名停經後的婦女世代。利用存活分析評估停經年齡與全死因死亡率、糖尿病相關死亡率、心血管疾病相關死亡率和癌症相關死亡率之間的關係。研究結果顯示,停經年齡 <40-44 歲女性的糖尿病死亡率顯著較高,且45-49 歲停經女性的全因死亡率高於參考組女性(停經年齡50-54 歲)。這些女性也與 CVD 死亡率增加有關,而 55-60 歲停經女性族群的 CVD 死亡率風險則降低。因此,停經年齡可能是中年女性心臟代謝疾病的重要指標,代表著未來的健康老化。
在第四章中,我們使用來自美兆健康數據庫探究一項縱向研究,本研究討論 CVD 風險因子隨時間變化的態樣。我們計算出停經過渡期間 CVD 危險因子的平均變化,並探討停經和老化對 CVD 危險因子變化率的影響。三酸甘油酯 (TG)、總膽固醇 (TC) 和低密度脂蛋白膽固醇 (LDL-C)呈現與停經相關的軌跡模式,在最後一次月經(FMP)前後2 年內快速增加。血糖的增加情形始於 FMP 之前,接近FMP 時加速變化, FMP 之後則輕微減速。收縮壓(SP)在FMP前2年上升較快,並在老年時達到穩定狀態。 低密度脂蛋白膽固醇(HDL-C) 和身體質量指數 (BMI) 在 FMP 之前顯著增加,之後則減緩。我們研究證據顯示,早停經與停經過渡期間 TG 和 BMI 的較快增加有關。相比之下,晚停經的女性(55-59 歲)其TC、LDL-C 和 HDL-C 的變化比停經年齡較早的女性來的緩慢。
綜上所述,本論文利用台灣停經過渡期女性重覆測量CVD危險因子的數據證實停經期對 CVD 危險因子的影響,尤其是血脂,而對於停經期提前的女性來說,這種影響尤其顯著。此研究結果顯示出早停經女性對心血管疾病風險管理認知的需要。
關鍵字:停經年齡 心臟血管疾病危險因子 長期追蹤資料分析
The menopausal transition is a critical period for women. During this time, menopause-related physiological changes coexist with age-related changes, increasing the risk of developing cardiometabolic disease. Thus, it is important to understand the impact of menopause and chronological ageing, either alone or together, on cardiovascular disease (CVD) risk factors. To disentangle such complexity, the goal of this dissertation was to study the risk factors of the age at menopause and their effect on health, as well as apply a longitudinal data analysis approach to study the long-term changes in CVD risk factors and their association with age at menopause in Taiwanese women.
Age at natural menopause (ANM) and its associated factors have attracted much interest because ANM might be an indicator for cardiometabolic disease risk in later life. Research suggests that ANM varies across geographic regions and ethnicities. In chapter two of this dissertation, we analyzed the data of 4,111 women aged 35 years and above from cross-sectional surveys (Nutrition and Health Survey in Taiwan). A Cox proportional hazards model was used to assess the association of ANM with relevant factors, and a life table method was used to estimate the median ANM. Our findings showed that women in the younger cohorts with higher educational levels, who are parous and married, may have a later ANM. Thus, ANM may reflect the influences of socioeconomic/nutritional status of women in their early life or throughout their lifetime.
In chapter three of this dissertation, we analyzed a cohort of 36,931 postmenopausal women from the MJ Health Database in Taiwan. Survival analysis was used to assess the association of the age at menopause with all-cause, diabetes-related, CVD-related, and cancer-related mortality. Our findings revealed that women aged <40‒44 years at menopause showed significantly higher diabetes mortality, while women experiencing menopause at 45‒49 years showed higher all-cause mortality than the reference category (50‒54 years). These women were also associated with increased CVD mortality, while the CVD mortality risk declined in the 55‒60 years’ category. Thus, the age at menopause could be an important cardiometabolic disease marker for women in midlife that indicates future longevity.
In chapter four of this dissertation, we describe a longitudinal study using data from the MJ Health Database characterizing the changes in CVD risk factors over time. We calculated the mean changes in CVD risk factors across the menopausal transition and considered the effect of menopause and ageing on the rates of changes in the CVD risk factors. The trajectories of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) followed a menopause-related pattern with rapid acceleration within the 2-year period before and after the final menstrual period (FMP). The pattern of change for blood glucose began with an increase before the FMP, an accelerated change around the FMP, and a slight deceleration after the FMP. The systolic blood pressure (SP) increased faster 2 years before the FMP and reached stable levels in older age. The HDL-C and body mass index (BMI) showed a significant increase before the FMP but slowed down afterward. We found evidence that an early age at menopause was associated with faster increases in TG and BMI across the menopausal transition. In contrast, women experiencing menopause at a later age (55‒59 years) had a slower change in TC, LDL-C, and HDL-C than those with younger age at menopause.
In summary, data from the Taiwanese cohort of women transitioning through menopause with repeated measures of CVD risk factors confirm the impact of menopause on CVD risk factors, particularly the lipids. The impact is especially significant for women experiencing early menopause. These findings indicate the need for awareness of CVD risk management in women with early menopause.
Keyword: age at menopause, CVD risk factors, longitudinal data analysis
1. Wend, K., Wend, P., and Krum, S. A. Tissue-specific effects of loss of estrogen during menopause and aging. Front. Endocrinol. (Lausanne).2012. 3:19.
2. Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the metabolic syndrome: the Study of Women's Health Across the Nation. Archives of internal medicine. 2008. 168: p. 1568–1575.
3. Brand JS, van der Schouw YT, Onland-Moret NC, Sharp SJ, Ong KK, Khaw KT, et al. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care. 2013. 36(4): p. 1012–1019.
4. Peters S.A., Woodward M. Women’s reproductive factors and incident cardiovascular disease in the UK Biobank. Heart. 2018. 104: p. 1069–1075.
5. Bagur AC, Mautalen CA. Risk for developing osteoporosis in untreated premature menopause. Calcified tissue international. 1992. 51: p. 4–7.
6. World Health Organization Scientific Group. (1996). WHO Technical Report Series 866: Research on the menopause in the 1990s. Geneva, Switzerland: World Health Organization. Retrieved from http://whqlibdoc.who.int/trs/WHO_TRS_866.pdf
7. National Institutes of Health State-of-the-Science Panel. (2005). National Institutes of Health State-of-the-Science Conference Statement: Management of Menopause-Related Symptoms. Annals of Internal Medicine, 142(12_Part_1), 1003-1013. Retrieved from http://consensus.nih.gov/2005/menopause.htm
8. Randolph, J. F. et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: Efect of age at the fnal menstrual period. J. Clin. Endocr. Metab. 2011. 96: p. 746–754.
9. Harlow, S. D. et al. Executive summary of the Stages of Reproductive Aging Workshop+10: Addressing the unfnished agenda of staging reproductive aging. Menopause J. N. Am. Menopause Soc. 2012. 19; p. 387–395.
10. Schoenaker DA, Jackson CA, Rowlands JV, Mishra GD. Socioeconomic position, lifestyle factors and age at natural menopause: a systematic review and meta-analyses of studies across six continents. Int J Epidemiol. 2014; 43(5): p. 1542 –62.
11. Gold, E.B.; Crawford, S.L.; Avis, N.E.; Crandall, C.J.; Mattesws, K.A.; Waetjen, L.E.; Lee, J.S.; Thurston, R.; Vuga, M.; Harlow, S.D. Factors related to age at natural menopause: Longitudinal analyses from Swan. Am. J. Epidemiol. 2013, 178; p. 70–83.
12. Palmer JR, Rosenberg L, Wise LA, Horton NJ, & Adams-Campbell LL. Onset of natural menopause in African American women. American Journal of Public Health. 2003. 93(2): p. 299–306.
13. D Ozaki, R Kubota, T Maeno, M Abdelhakim, N Hitosugi. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporosis International. 2020. Online ahead of print.
14. Park, C.Y., J.Y. Lim, and H.Y. Park, Age at natural menopause in Koreans: secular trends and influences thereon. Menopause, 2018. 25(4): p. 423-429.
15. Gold, E.B., et al., Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am J Epidemiol, 2001. 153(9): p. 865-74.
16. Gold, E. B. The timing of the age at which natural menopause occurs. Obstet. Gynecol. Clin. N. Am. 2011. 38: p. 425.
17. Muka, T., et al., Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. JAMA Cardiol, 2016. 1(7): p. 767-776.
18. Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017. 8.
19. Sullivan J. Iron and the sex difference in heart disease risk. Lancet. 1981. 317: p. 1293–1294.
20. Muka, T, Chowdhury, R, Franco, OH. Effect of Iron Levels on Women After Premature or Early-Onset Menopause—Reply. JAMA Cardiology. 2017. 2(4): p. 458–459.
21. Rubin, K. H., Glintborg, D., Nybo, M., Abrahamsen, B., and Andersen, M. Development and risk factors of type 2 diabetes in a Nationwide population of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017. 102: p. 3848–3857.
22. Wu SI, Chou P & Tsai ST. The impact of years since menopause on the development of impaired glucose tolerance. Journal of Clinical Epidemiology. 2001. 54: p.117–200.
23. Laven JSE, Visser JA, Uitterlinden AG, Vermeij WP, Hoeijmakers JHJ. Menopause: Genome stability as new paradigm. Maturitas. 2016. 92: p. 15–23
24. Kok HS, van Asselt KM, van der Schouw YT, van der Tweel I, Peeters PHM, Wilson PWF, et al. Heart disease risk determines menopausal age rather than the reverse. J Am Coll Cardiol. 2006. 47(10): p.1976–83.
25. Matthews K. A., Crawford S. L., Chae C. U., et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? Journal of the American College of Cardiology. 2009. 54: p.2366–2373.
26. Cho GJ, Lee JH, Park HT, Shin JH, Hong SC, Kim T, et al. Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause. 2008. 15(3): p.524–9.
27. Matthews, K.A.; Kuller, L.H.; Sutton-Tyrrell, K.; Chang, Y.F. Changes in cardiovascular risk factors during the perimenopause and postmenopause and carotid artery atherosclerosis in healthy women. Stroke. 2001. 32: p.1104–1111.
28. O’Keeffe, L.M.; Kuh, D.; Fraser, A.; Howe, L.D.; Lawlor, D.; Hardy, R. Age at period cessation and trajectories of cardiovascular risk factors across mid and later life. Heart. 2020. 106: p.499–505.
29. Derby, C.A., et al., Lipid changes during the menopause transition in relation to age and weight: the Study of Women's Health Across the Nation. Am J Epidemiol, 2009. 169(11): p. 1352-61.
30. Svejme, O., et al., Early menopause and risk of osteoporosis, fracture and mortality: a 34-year prospective observational study in 390 women. BJOG, 2012. 119(7): p. 810-6.
31. Atsma, F., et al., Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: a meta-analysis. Menopause, 2006. 13(2): p. 265-79.
32. Jung, S.J., A. Shin, and D. Kang, Menarche age, menopause age and other reproductive factors in association with post-menopausal onset depression: Results from Health Examinees Study (HEXA). J Affect Disord, 2015. 187: p. 127-35.
33. Ossewaarde, M.E., et al., Age at menopause, cause-specific mortality and total life expectancy. Epidemiology, 2005. 16(4): p. 556-62.
34. Chang, C., S.N. Chow, and Y. Hu, Age of menopause of Chinese women in Taiwan. Int J Gynaecol Obstet, 1995. 49(2): p. 191-2.
35. Department of Statistics, Ministry of the Interior, Taiwan. Available at: https://www.moi.gov.tw/stat/.
36. PAN, W.-H., et al., Nutrition and health survey in Taiwan (NAHSIT) 1993-1996: design, contents, and operations. Nutritional Sciences Journal, v. 24, 1999(1): p. 1-10.
37. Pan, W.H., et al., Elderly Nutrition and Health Survey in Taiwan (1999-2000): research design, methodology and content. Asia Pac J Clin Nutr, 2005. 14(3): p. 203-10.
38. Tu, S.H., et al., Design and sample characteristics of the 2005-2008 Nutrition and Health Survey in Taiwan. Asia Pac J Clin Nutr, 2011. 20(2): p. 225-37.
39. Schafer, J.L. and J.W. Graham, Missing data: our view of the state of the art. Psychol Methods, 2002. 7(2): p. 147-77.
40. Costanian, C., H. McCague, and H. Tamim, Age at natural menopause and its associated factors in Canada: cross-sectional analyses from the Canadian Longitudinal Study on Aging. Menopause, 2018. 25(3): p. 265-272.
41. Dratva, J., et al., Is age at menopause increasing across Europe? Results on age at menopause and determinants from two population-based studies. Menopause, 2009. 16(2): p. 385-94.
42. Flint, M.P., Secular trends in menopause age. J Psychosom Obstet Gynaecol, 1997. 18(2): p. 65-72.
43. Kalichman, L., I. Malkin, and E. Kobyliansky, Time-related trends of age at menopause and reproductive period of women in a Chuvashian rural population. Menopause, 2007. 14(1): p. 135-40.
44. Rodstrom, K., et al., Evidence for a secular trend in menopausal age: a population study of women in Gothenburg. Menopause, 2003. 10(6): p. 538-43.
45. Shinberg, D.S., An event history analysis of age at last menstrual period: correlates of natural and surgical menopause among midlife Wisconsin women. Soc Sci Med, 1998. 46(10): p. 1381-96.
46. Varea, C., et al., Secular trend and intrapopulational variation in age at menopause in Spanish women. J Biosoc Sci, 2000. 32(3): p. 383-93.
47. Canavez, F.S., et al., The association between educational level and age at the menopause: a systematic review. Arch Gynecol Obstet, 2011. 283(1): p. 83-90.
48. Hardy, R. and D. Kuh, Social and environmental conditions across the life course and age at menopause in a British birth cohort study. BJOG, 2005. 112(3): p. 346-54.
49. Lawlor, D.A., S. Ebrahim, and G.D. Smith, The association of socio-economic position across the life course and age at menopause: the British Women's Heart and Health Study. BJOG, 2003. 110(12): p. 1078-87.
50. Rachel Lu, J.F. and T.L. Chiang, Evolution of Taiwan's health care system. Health Econ Policy Law, 2011. 6(1): p. 85-107.
51. Tsai, S.-L., H. Gates, and H.-Y. Chiu, Schooling Taiwan's women: Educational attainment in the mid-20th century. Sociology of Education, 1994: p. 243-263.
52. Elias, S.G., et al., Caloric restriction reduces age at menopause: the effect of the 1944-1945 Dutch famine. Menopause, 2003. 10(5): p. 399-405.
53. Colditz, G.A., et al., Reproducibility and validity of self-reported menopausal status in a prospective cohort study. Am J Epidemiol, 1987. 126(2): p. 319-25.
54. Whitcomb, B.W., et al., Cigarette Smoking and Risk of Early Natural Menopause. Am J Epidemiol, 2018. 187(4): p. 696-704.
55. Harlow, S.D., et al., Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab, 2012. 97(4): p. 1159-68.
56. Chow, L.P. and N.K. Nair, Oral contraceptive use and diseases of the circulatory system in Taiwan: an analysis of mortality statistics. Int J Gynaecol Obstet, 1980. 18(6): p. 420-32.
57. Kritz-Silverstein, D.; Barrett-Connor, E. Early menopause, number of reproductive years, and bone mineral density in postmenopausal women. Am. J. Public Health 1993. 83: p. 983–988.
58. ESHRE Capri Workshop Group Bone fractures after menopause. Hum Reprod Update. 2010. 16: p. 761–773.
59. Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: Long-term health consequences. Maturitas. 2010. 65: p. 161–6.
60. Muka T, Oliver-Williams C, Kunutsor S, Laven JS, Fauser BC, Chowdhury R, et al. Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. JAMA cardiology. 2016. 1(7): p. 767–76.
61. Asllanaj E, Bano A, Glisic M, Jaspers L, Ikram MA, Laven JSE, Vőlzke H, Muka T, Franco OH. Age at natural menopause and life expectancy with and without type 2 diabetes. Menopause. 2019. 26(4): p. 387-394.
62. Muka T, Asllanaj E, Avazverdi N, Jaspers L, Stringa N, Milic J, et al. Age at natural menopause and risk of type 2 diabetes: a prospective cohort study. Diabetologia. 2017; 60(10): p.1951–1960.
63. Mondul A.M., Rodriguez C., Jacobs E.J., Calle E.E. Age at natural menopause and cause-specific mortality. Am J Epidemiol. 2005. 162: p. 1089–1097.
64. Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S. Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer. 1990. 46: p. 796–800.
65. Roman Lay AA., do Nascimento CF., de Oliveira Duarte YA., Porto Chiavegatto Filho AD. Age at natural menopause and mortality: A survival analysis of elderly residents of São Paulo, Brazil. Maturitas. 2018. 117: p. 29-33.
66. Butts SF, Seuifer DB. Racial and ethnic differences in reproductive potential across the life cycle. Fertil Steril. 2010. 93: p. 681–690.
67. Wu X, Tsai SP, Tsao CK, et al. Cohort Profile: The Taiwan MJ Cohort: half a million Chinese with repeated health surveillance data. Int J Epidemiol 2017. 46: p. 1744-1744g.
68. Lamarca R, Alonso J, Gómez G, Muñoz Á. Left-truncated data with age as time scale: an alternative for survival analysis in the elderly population. J Gerontol A Biol Sci Med Sci. 1998. 53A: p. M337–M343.
69. Shen TY, Chen HJ, Pan WH, Yu T. Secular trends and associated factors of age at natural menopause in Taiwanese women. Menopause. 2019. 26(5): p. 499-505.
70. Woodward M, Tunstall-Pedoe H, Peters SA. Graphics and statistics for cardiology: clinical prediction rules. Heart. 2017. 103: p. 538–545.
71. Iorga A, Cunningham CM, Moazeni S, et al. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017. 8(1): p. 33.
72. Sarnowski C, Kavousi M, Isaacs S, et al. Genetic variants associated with earlier age at menopause increase the risk of cardiovascular events in women. Menopause. 2018; 25(4): p. 451-457.
73. Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab. 2014. 20(6): p. 967–77.
74. Cain K. C., Harlow S. D., Little R. J., Nan B., Yosef M., Taffe J. R., & Elliott M. R. Bias due to left truncation and left censoring in longitudinal studies of developmental and disease processes. American Journal of Epidemiology. 2011. 173(9): p. 1078–1084.
75. Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. The Lancet Oncology. 2012. 13(11): p. 1141–1151.
76. Iwasaki M, Otani T, Inoue M, et al. Role and impact of menstrual and reproductive factors on breast cancer risk in Japan. Eur J Cancer Prev 2007. 16: p. 116–23.
77. Monninkhof E.M., van der Schouw Y.T., Peeters P.H. Early age at menopause and breast cancer: Are leaner women more protected? A prospective analysis of the Dutch DOM cohort. Breast Cancer Res. Treat. 1999. 55: p. 285–291.
78. Rennert G, Rennert HS, Pinchev M, Lavie O, Gruber SB. Use of hormone replacement therapy and the risk of colorectal cancer. J Clin Oncol. 2009. 27: p. 4542–7.
79. Camargo MC, Goto Y, Zabaleta J, Morgan DR, Correa P, Rabkin CS. Sex hormones, hormonal interventions, and gastric cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2012. 21(1): p. 20–38.
80. Wang Z, Butler LM, Wu AH, et al. Reproductive factors, hormone use and gastric cancer risk: the Singapore Chinese Health Study. Int J Cancer. 2016. 138: p. 2837–45.
81. Clague J, Reynolds P, Henderson KD, Sullivan-Halley J, Ma H, Lacey JV Jr, Chang S, Delclos GL, Du XL, Forman MR, Bernstein L. Menopausal hormone therapy and lung cancer-specific mortality following diagnosis: the California teachers study. PLoS One. 2014. 9(7): p. e103735
82. Sowers M, Zheng H, Tomey K, Karvonen-Gutierrez C, Jannausch M, Li X, et al. Changes in Body Composition in Women over Six Years at Midlife: Ovarian and Chronological Aging. The Journal of Clinical Endocrinology & Metabolism. 2007;92(3):895–901.
83. Do KA, Green A, Guthrie JR, et al. Longitudinal study ofrisk factors for coronary heart disease across the menopausal transition. Am J Epidemiol 2000; 151:584–93.
84. Matthews KA, Meilahn E, Kuller LH, Kelsey SF, Caggiula AW, Wing RR. Menopause and risk factors for coronary heart disease. N Engl J Med 1989; 321:641–646.
85. Torng P. L., Su T. C., Sung F. C., et al. Effects of menopause and obesity on lipid profiles in middle-aged Taiwanese women: the Chin-Shan Community Cardiovascular Cohort Study. Atherosclerosis. 2000; 153(2):413–421.
86. Heianza Y, Arase Y, Kodama S, Hsieh SD, Tsuji H, Saito K, et al. Effect of postmenopausal status and age at menopause on type 2 diabetes and prediabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 17 (TOPICS 17) Diabetes Care. 2013; 36: p.4007–4014.
87. Izumi Y, Matsumoto K, Ozawa Y, et al. Effect of age at menopause on blood pressure in postmenopausal women. Am J Hypertens. 2007; 20:1045–1050.
88. Tilling K, Macdonald-Wallis C, Lawlor DA, Hughes RA, Howe LD. Modelling childhood growth using fractional polynomials and linear splines. Ann. Nutr. Metab. 2014;65:129–138.
89. Naumova EN, Must A, Laird NM. Tutorial in biostatistics: evaluating the impact of ‘critical periods’ in longitudinal studies of growth using piecewise mixed effects models. Int J Epidemiol 2001;30:1332-41
90. Sun B, Bertolet M, Brooks MM, et al. Life course changes in cardiometabolic risk factors associated with preterm delivery: the 30‐year CARDIA study. J Am Heart Assoc. 2020; 9:e015900.
91. Wills, A. K. et al. Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts. PLoS Med. 2011; 8:e1000440.
92. Sutton-Tyrrell K, Lassila HC, Meilahn E, Bunker C, Matthews KA, Kuller LH. Carotid atherosclerosis in premenopausal and postmenopausal women and its association with risk factors measured after menopause. Stroke. 1998;29(6): p.1116-1121.
93. Vryonidou A, et al. MECHANISMS IN ENDOCRINOLOGY: metabolic syndrome through the female life cycle. Eur J Endocrinol. 2015;173(5): R153–R163.
94. Barrett‐Connor E, Schrott HG, Greendale G, et al Factors associated with glucose and insulin levels in healthy postmenopausal women. Diabetes Care. 1996; 19: p.333–340.
95. Dam V, van der Schouw YT, Onland-Moret NC, Groenwold RHH, Peters SAE, Burgess S, Wood AM, Chirlaque MD, Moons KGM, Oliver-Williams C, et al. Association of menopausal characteristics and risk of coronary heart disease: a pan-European case-cohort analysis. Int J Epidemiol. 2019. 48:1275–1285.
96. Tom SE, Cooper R, Wallace RB, et al. Type and timing of menopause and later life mortality among women in the Iowa established populations for the epidemiological study of the elderly (EPESE) cohort. J Womens Health (Larchmt). 2012; 21: 10–16.
97. Lee JS, et al. Independent association between age at natural menopause and hypercholesterolemia, hypertension, and diabetes mellitus: Japan nurses’ health study. Journal of Japan Atherosclerosis Society. 2013;20: p.161–169.
98. He L, Tang X, Li N, Wu YQ, Wang JW, Li JR, et al. Menopause with cardiovascular disease and its risk factors among rural Chinese women in Beijing: a population-based study. Maturitas. 2012;72: p.132–138.
99. Mishra GD, Cooper R, Kuh D. A life course approach to reproductive health: theory and methods. Maturitas. 2010. 65(2): p. 92–7.
100. Zhu DS, Chung HF, Pandeya N, Dobson AJ, Hardy R, Kuh D, et al. Premenopausal cardiovascular disease and age at natural menopause: a pooled analysis of over 170,000 women. Eur J Epidemiol. 2019;34(3): p. 235–246.
校內:2025-12-31公開