研究生: |
鄭涵方 Cheng, Han-Fang |
---|---|
論文名稱: |
環糊精–含偶氮苯單體包容錯合物之自組裝及特性研究 Fabrication and Characterization of Self-Assembled β-Cyclodextrin Threaded Azobenzene-Containing Monomer |
指導教授: |
劉瑞祥
Lui, Jui-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 光致變性 、偶氮苯 、光異構化 、β-環糊精 、包容錯合物 、自組裝 |
外文關鍵詞: | photochromic, azobenzene, photoisomerization, β-cyclodextrin, inclusion complex, self-assembly |
相關次數: | 點閱:87 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成一含長烷鏈及光致變性偶氮苯基團之單體,並利用此單體與β-環糊精形成包容錯合物,探討其在不同溶劑與光異構化之自組裝特性。由FTIR與1H-NMR的結果顯示,平均約有二到三個β-環糊精分子穿入此光致變性單體,而β-環糊精分別位於長烷鏈與偶氮苯基團上。將此包容錯合物溶於不同溶劑,並由POM以及TEM鑑定其自組裝結構,證實溶劑效應對自組裝結構之影響。其中客分子(EMPAB)含偶氮苯基團,經紫外光照射可進行E–Z光異構化反應,使包容於末端偶氮苯之β-環糊精自客分子上脫落,在pyridine中之自組裝結構由短柱狀變為長柱狀;置於黑暗中可進行Z–E光異構化,並回復為短柱狀,故可由光異構化調變該包容錯合物之自組裝結構。由於此包容錯合物具有單體之性質,因此利用1-Hydroxy-cyclohexyl-phenyl-ketone作為光起始劑進行聚合反應,並研究該聚合包容錯合物溶劑與光異構化之自組裝行為,其結果與未聚合之包容錯合物相類似。
To investigate self-assembly behavior and photoisomerization in various solvents, a novel photochromic monomer containing an azobenzene group threaded with β-cyclodextrin was synthesized. From the results of FTIR and 1H-NMR analyses it was found that two or three cyclodextrin molecules were threaded onto the synthesized monomer forming an inclusion complex. The synthesized inclusion complex was further dissolved in several kinds of solvent leading to the formation of a short columnar construction of self-assembled inclusion complexes in pyridine. Nail-like structure in DMSO and longer fibrous structure in acetone were identified using POM, SEM and TEM. Furthermore, the self-assembled structure of inclusion complex could be photo-tuned from short columnar structure to longer fibrous structure. The results are ascribed to the isomerization of azobenzene side chain from E to Z. The monomeric inclusion complex was further polymerized using 1-hydroxy-cyclohexyl-phenyl-ketone as a photoinitiator. The solvent effect and photoisomerization of the self-assembled poly-(inclusion complex) was investigated. The results obtained in this investigation are quite similar to those of monomeric inclusion complex.
[1] J. Pedersen, Angew. Chem. lnt. Ed. Engl. 27, 1021 (1988).
[2] J.-M. Lehn, Angew. Chem. 100, 91 (1988); Angew. Chem. Int. Ed. Engl. 27, 89 (1988).
[3] J. Cram, Angew Chem. Int. Ed. Engl. 27, 1009 (1988).
[4] J.-M. Lehn, Pure. Appl. Chem. 50, 871 (1978).
[5] L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma, Chem. Rev. 101(12), 4071 (2001).
[6] J.-M. Lehn,“Supramolecular Chemistry: Concepts and Perspectives”,VCH, Weinheim (1995).
[7] J.-M. Lehn, Angew. Chem. Int. Ed. Engl. 29, 1304 (1990).
[8] B. H. Hong, S. C. Bae, C.-W. Lee, S. Jeong and, K. S. Kim, Science 294, 348 (2001).
[9] E. P. Kyba, R. C. Helgeson, K. Madan, G. W. Gokel, T. L. Tarnowski, S. S. Moore and D. J. Cram, J. Am. Chem. Soc. 99, 2564 (1977).
[10] H. M. Powell, J. Chem. Soc. 61 (1948); J. W. Steed and J. L. Atwood, “Supramolecular Chemistry”, John Wiley & Sons, Chichester (2000).
[11] H. Dodziuk, “Cyclodextrins and Their Complexes”, Wiley-VCH, Weinheim (2006).
[12] L. F. Lindoy and I. M. Atkinson, “Self-Assembly in Supramolecular Systems”, Royal Society of Chemistry, Cambridge (2000).
[13] Y. S. Lee, “Self-Assembly and Nanotechnology: A Force Balance Approach”, John Wiley & Sons, New Jersey (2008).
[14] D. Philp and J. F. Stoddart, Angew. Chem. lnt. Ed. Engl. 35, 1154 (1996).
[15] J. D. Watson and F. H. C. Crick, Nature 171, 737 (1953).
[16] A. Klug, Phil. Trans. R. Soc. Lond. B. 354, 531 (1999).
[17] J. L. Atwood and J. W. Steed, “Encyclopedia of Supramolecular Chemistry”, Taylor & Francis Group, FL (2004).
[18] P. Mukerjee, Adv. Colloid Interface Sci. 1, 241 (1967).
[19] S. Stewart and G. Liu, Chem. Mater. 11(4), 1049 (1999).
[20] D. Lasic, Biochem. J. 256, 1 (1988).
[21] J. Szejtli, “Comprehensive Supramolecular Chemistry”, Pergamon Press, Oxford, 3, 693 (1996).
[22] A. Biwer, G. Antranikian and E. Heinzle, Appl. Microbiol. Biotechnol. 59, 609 (2002).
[23] T. Loftsson and D. Duchene, Int. J. Pharm. 329, 1 (2007).
[24] J. Szetjli, Chem. Rev. 98, 1743 (1998).
[25] T. Loftsson and M. E Brewster, J. Pharm. Sci. 85, 1017 (1996).
[26] M. E. Davis and M. E. Brewster, Nat. Rev. Drug Discovery 3, 1023 (2004).
[27] R. A. Rajewski and V. J. Stella, J. Pharm. Sci. 85, 1142 (1996).
[28] W. Saenger, J. Jacob, K. Gessler, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith and T. Takaha, Chem. Rev. 98, 1787 (1998).
[29] A. Ashnagar, N. G. Naseri and B. Khanaki, E-J. Chem. 4(4), 550 (2007).
[30] 何仲貴編著,“環糊精包合技術”,人民衛生出版社 (2008)。
[31] H. Bouas-Laurent and H. Dürr, Pure Appl. Chem. 73, 639 (2001).
[32] 簡孜潔,“含不同光致變及末端基團之液晶共聚高分子之合成及特性探討”,國立成功大學化學工程研究所碩士論文 (2009)。
[33] Y. Hirshberg. Compt. Rend. Acad. Sci. 231, 903 (1950).
[34] M. Irie, Chem. Rev. 100, 1685 (2000).
[35] V. Shibaev, A. Bobrovsky and N. Boiko, Prog. Polym. Sci. 28, 729 (2003).
[36] V. A. Barachevskii, G. I. Laszhkov and V. A. Tsekhomskii, “Photochromism and its application”, Khimiya, Moscow (1977).
[37] R. Giménez, M. Piñol, J. L. Serrano, A. I. Viñuales, R. Rosenhauer and J. Stumpe, Polymer 47, 5707 (2006)
[38] F. Manakker, T. Vermonden, C. F. Nostrum and W. E. Hennink, Biomacromolecules, 10(12), 3157 (2009).
[39] H. Schlenk, D. Sand and J. A. Tillotson, U.S. Pat. 2827452 (1958).
[40] A. Ghuzlaan, M. M. Al Omari and K. A. Al-Sou’od, J. Solution Chem. 38, 83 (2009).
[41] Z. Lu, C. Lu and Q. Meng, J. Incl. Phenom. Macrocycl. Chem. 61, 101 (2008).
[42] A. Harada and M. Kamachi, Macromolecules 23, 2821 (1990).
[43] A. Harada,Y. Takashima and H. Yamaguchi, Chem. Soc. Rev. 38, 875 (2009).
[44] J. S. Patil, D.V. Kadam, S.C. Marapur and M.V. Kamalapur, Int. J. Pharm. Sci.: Rev. Res. 2, 29 (2010).
[45] J. Courregelongue and J. P. Maffrand, U.S. Pat. 4880573 (1989).
[46] S. Giuffrida, G. Ventimiglia, S. Petralia, S. Conoci and S. Sortino, Inorg. Chem. 45(2), 508 (2006).
[47] Y. Ohya, S. Takamido, K. Nagahama, T. Ouchi, T. Ooya, R. Katoono and N. Yui, Macromolecules 40(18), 6441 (2007).
[48] S. Wu, Y. Luo, F. Zeng, J. Chen, Y. Chen and Z. Tong, Angew. Chem. Int. Ed. 46, 7015 (2007).
[49] Y. Inoue, P. Kuad, Y. Okumura, Y. Takashima, H. Yamaguchi and A. Harada, J. Am. Chem. Soc. 129, 6396 (2007).
[50] S. Anderson, T. D. W. Claridge and H. L. Anderson, Angew. Chem. Int. Ed. Engl. 36, 1310 (1997).
[51] J. Wu, H. He and C. Gao, Macromolecules, 43 (5), 2252 (2010).
[52] H. Dong, Y. Li, S. Cai, R. Zhuo, X. Zhang, and L. Liu, Angew. Chem. Int. Ed. 47, 5573 (2008).
[53] J. Liu, H. R. Sondjaja and K. C. Tam, Langmuir 23, 5106 (2007).
[54] Y.-L. Wu and J. Li, Angew. Chem. Int. Ed. 48, 3842 (2009).
[55] Y. Wang, N. Ma, Z. Wang and Xi Zhang, Angew. Chem. Int. Ed. 46, 2823 (2007).
[56] M. V. Rekharsky and Y. Inoue, Chem. Rev. 98, 1875 (1998).
[57] X. H. Dai, C. M. Dong, H. B. Fa, D. Yan and Y. Wei, Biomacromolecules 7, 3527 (2006).
[58] C. C. Rusa, C. Luca and A. E. Tonelli, Macromolecules, 34, 1318 (2001).
[59] L. Huang, E. Allen and A. E. Tonelli, Polymer 40, 3211 (1999).
[60] Y. Liu, Y. W. Yang, Y. Chen and H. X. Zou. Macromolecules 38, 5838 (2005).
[61] J. Kim and T. M. Swager, Nature 411, 1030 (2001).
[62] F. Giordano, C. Novak and J. R. Moyano, Thermochimica Acta 380, 123 (2001).
[63] J. H. Liu, H. J. Hung, and A. Harada, Langmuir 24, 7442 (2008).
[64] J.Wang, P. Gao, L. Ye, A. Y. Zhang and Z. G. Feng, J. Phys. Chem. B 114, 5342 (2010).
[65] M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc. 98, 377 (1976).
[66] T. L. Bucholz and Y. L. Loo, Macromolecules 41, 4069 (2008).
[67] V. Shibaev, A. Bobrovsky and N. Boiko, J. Photochem. Photobiol. A: Chem. 155, 3 (2003).
[68] Y. S. Kim and C. S. P. Sung, J. Appl. Polym. Sci. 57, 363 (1995).