| 研究生: |
許欣穎 Hsu, Hsin-Ying |
|---|---|
| 論文名稱: |
直覺式模糊動態群體決策模式 Dynamic Group Multi-attribute Decision-making Approaches with Intuitionistic Fuzzy Sets |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 動態決策 、群體決策 、多屬性決策 、直覺式模糊 |
| 外文關鍵詞: | Dynamic Decision, Group Decision, Multiple-Attribute Decision, Intuitionistic Fuzzy |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
決策問題通常包含多個面向,因此可從多個屬性去評估方案的表現,並讓多位專家一同討論和參與決策,而隨著時間變動,各方案的表現以及條件都可能有所改變,為了同時考量過去和現在的表現,可將多個時期的評估值整合起來做決策。此外,專家的意見通常具有主觀性和不確定性,以直覺式模糊數做為評估值將可以包含正負向資訊和猶豫程度。本研究提出一直覺式模糊動態群體決策模式,透過計算方案的表現在多期以來的變化趨勢對評估值做調整,利用相似度計算專家間的共識程度,並針對專家、方案和屬性的變動提出應對的方法,一步步整合各專家意見、各時期評估值和各屬性的表現去找出長期以來表現最佳的方案。多位專家透過多個屬性評估可以做出更全面客觀的決策,其中利用相似度計算共識程度以避免有過於偏差的專家意見影響決策結果。此外,考量專家、方案和屬性等條件的變動情況將更符合實際情形,且透過計算變化趨勢期望可以選出在多期以來表現較佳,且未來也會表現較佳之方案。最後對決策模式和共識程度分別進行範例演算,在決策模式的部分,發現本研究考慮趨勢變化的排序結果比起過去文獻更能在方案的排名反映出進步和退步的情形,更有助於找出最佳的方案;而共識程度的演算結果顯示本研究比起過去文獻的方法可更精確地找出明顯偏差評估值。
When people are making decisions, they evaluate all available alternatives with respect to different attributes. Decision-makers can benefit from inviting experts of different fields to evaluate the selected alternatives. With time, the number of alternatives, experts, attributes, and even the performance of alternatives change. In order to consider the temporal changes in the performance of several alternatives, we can use the so called dynamic decision-making method. In our model, we use similarity measure to calculate the consensus level between experts. This way we can avoid deviation evaluation values, which are too different from the other evaluation values and need to be modified, and we can also provide a standard threshold for decision-makers. Obtaining the trends of alternatives’ performances over these periods, we can modify the evaluation values of alternatives as well. Our model aggregates the evaluation values of each alternative with respect to each attribute provided by different experts in each time period. Through the above processes, we hope to find the alternative that had the best performance in the past and will most likely perform even better in the future. Finally, we compare our proposed model with the literature. We found that our model reflects the trends of the alternatives’ performances more reliably than methods of literature. The result from our consensus level model showed that our model could find out the deviation values more precisely.
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
Campanella, G., & Ribeiro, R. A. (2011). A framework for dynamic multiple-criteria decision making. Decision Support Systems, 52(1), 52-60.
Chen, S.-M., & Tan, J.-M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 67(2), 163-172.
Chen, Y., & Li, B. (2011). Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers. Scientia Iranica, 18(2), 268-274.
Delgado, M., Herrera, F., Herrera-Viedma, E., & Martínez, L. (1998). Combining numerical and linguistic information in group decision making. Information Sciences, 107(1), 177-194.
Hong, D. H., & Choi, C.-H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 114(1), 103-113.
Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications: Springer. Berlin Heidelberg.
Jassbi, J. J., Ribeiro, R. A., & Varela, L. R. (2014). Dynamic MCDM with future knowledge for supplier selection. Journal of Decision Systems, 23(3), 232-248.
Jiang, Y., Xu, Z., & Yu, X. (2013). Compatibility measures and consensus models for group decision making with intuitionistic multiplicative preference relations. Applied Soft Computing, 13(4), 2075-2086.
Lin, Y.-H., Lee, P.-C., & Ting, H.-I. (2008). Dynamic multi-attribute decision making model with grey number evaluations. Expert Systems with Applications, 35(4), 1638-1644.
Sadiq, R., & Tesfamariam, S. (2007). Probability density functions based weights for ordered weighted averaging (OWA) operators: an example of water quality indices. European Journal of Operational Research, 182(3), 1350-1368.
Si, Y.-J., & Wei, F.-J. (2009). Dynamic multiattribute decision making based on the intuitionistic fuzzy priority rating model. Paper presented at the 2009 International Conference on Management Science and Engineering.
Su, Z.-X., Chen, M.-Y., Xia, G.-P., & Wang, L. (2011). An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Systems with Applications, 38(12), 15286-15295.
Szmidt, E., & Kacprzyk, J. (2005). A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making. Paper presented at the International Conference on Modeling Decisions for Artificial Intelligence.
Wei, G.-W. (2008). Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowledge-Based Systems, 21(8), 833-836.
Wei, G. (2011). Grey relational analysis model for dynamic hybrid multiple attribute decision making. Knowledge-Based Systems, 24(5), 672-679.
Xu, Z. (2007). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), 1179-1187.
Xu, Z. (2008). On multi-period multi-attribute decision making. Knowledge-Based Systems, 21(2), 164-171.
Xu, Z. (2012). Intuitionistic fuzzy multiattribute decision making: an interactive method. IEEE Transactions on Fuzzy Systems, 20(3), 514-525.
Xu, Z., & Yager, R. R. (2008). Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning, 48(1), 246-262.
Yeh, C. H. (2003). The selection of multiattribute decision making methods for scholarship student selection. International Journal of Selection and Assessment, 11(4), 289-296.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zeng, S. (2013). Some intuitionistic fuzzy weighted distance measures and their application to group decision making. Group Decision and Negotiation, 22(2), 281-298.
Zhang, L., Li, T., & Xu, X. (2014). Consensus model for multiple criteria group decision making under intuitionistic fuzzy environment. Knowledge-Based Systems, 57, 127-135.
校內:立即公開