| 研究生: |
翁輝竹 Weng, Huei-Chu |
|---|---|
| 論文名稱: |
微流體系統中氣體傳輸現象之分析 Gas transport phenomena in microfluidic systems |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 熱潛 、可壓縮性 、發展Poiseuille流 、有限差分法 、發展自然對流 、入口微流 、稀薄化 、微流體學 |
| 外文關鍵詞: | developing natural convection, developing Poiseuille flow, entry microflow, thermal creep (transpiration), compressibility, microfluidics, rarefaction, finite difference method |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們針對平行平板微渠道內穩態氣體傳輸現象提出一合理可行的分析方法,所探討的傳輸驅動機構包含了壓力驅動流與浮力驅動流。應用Navier-Stokes方程式、能量方程式、滑動速度與不連續溫度牆表面條件及動壓力入口條件,我們完成了發展流與完全發展流之流場型態的模式建立。其中牆表面速度與溫度條件係經由Maxwell-Smoluchowski一階關係式與線性化Burnett本構方程式推導獲得,入口壓力條件係經由流線動量方程式推導獲得;完全發展近似解係利用解析法或半解析法推導獲得,發展解係利用前進隱含法(marching implicit method, MI)模擬獲得。本論文發展的數學模式與數值程序,在與可利用的實驗結果比較後,其合理性獲得驗證。
我們求解不同微渠道長度下,速度滑動、溫度不連續、速度、壓力、溫度、質流率、流阻及熱傳率。分析結果發現,微渠道長度對熱流場具顯著效應。此長度效應對壓力驅動流而言,質流率及平均流阻減少;對浮力驅動流而言,質流率及平均流阻則增加,而平均熱傳率減少。所有的熱流場特性皆隨長度增加而接近完全發展近似解。在長度達一充分大的值時,熱流場可處在完全發展條件,結果顯示此現象可藉由工作環境的調整使其效應更顯著。對壓力驅動流而言,例如升高Knudsen數(分子平均自由路徑與渠道特徵長度的比)或工作溫度,或降低開口端壓力降參數(為一描述入口至出口壓力降的無因次數);對浮力驅動流而言,例如降低Knudsen數或Eckert數(為一描述牆溫度或熱潛的無因次數)。
我們亦詳細討論微流體系統中氣體傳輸時的稀薄化(rarefaction)、可壓縮性(compressibility)及熱潛(thermal creep)等現象。分析結果發現,這些傳輸現象對流場或熱場具顯著效應。稀薄化及熱潛效應使得質流率增加,並且獲得有價值的流阻降低及熱傳放大。當可壓縮性被考慮時,體積流率及局部流阻隨著流線位置的增加而增加。
In this study, we present a realistic analysis methodology for simulating steady gas transport in parallel-plate microchannels. Both of the pressure and the buoyancy driving mechanisms are considered. The flow patterns with respect to developing and fully developed flows are modeled by the Navier-Stokes equations and energy equation combined with the boundary conditions with respect to slip velocity and jump temperature along the wall surfaces as well as dynamic pressure at the entrance. The wall-surface conditions are obtained from the Maxwell-Smoluchowski first-order relations and the linearized Burnett constitutive equations, and the pressure condition is derived by the stream-wise momentum equation. The fully developed asymptote model is analytically or semi-analytically obtained, and the developing-flow simulation is implemented by using a marching implicit (MI) procedure. The mathematical model and the numerical code are validated through available experimental work.
Solutions of the slip, the jump, the velocity, the pressure, the temperature, the mass flow rate, the flow drag, and the heat transfer rate for different channel lengths are presented. Results reveal that channel length has significant effect on the flow and thermal fields. The length effect is to decrease the mass flow rate and the average flow drag for pressure-driven flow and to increase the mass flow rate and the average flow drag and decrease the average heat transfer rate for buoyancy-driven flow. Moreover, all of the characteristic values approach their fully developed asymptotic solutions. Fully developed conditions can be achieved for a sufficiently long channel. Such phenomenon could be enhanced by increasing the value of the Knudsen number (the ratio of the molecular mean free path to the characteristic length) or the working temperature or decreasing the value of an end-pressure-drop parameter (a dimensionless number characterizing the pressure drop from the entrance to the exit) for pressure-driven flow and by decreasing the value of the Knudsen number or the Eckert number (a dimensionless number characterizing the wall temperature or the thermal creep) for buoyancy-driven flow.
The phenomena of rarefaction, compressibility, and thermal creep in gas transport are discussed in detail. It is found that these phenomena have significant effects on the flow or thermal fields. The effects of rarefaction and creep are to increase the mass flow rate; moreover, valuable reduced flow drag and enhanced heat transfer are obtained. As the effect of compressibility is considered, we obtain increasing volume flow rate and local flow drag along the stream-wise location.
Agarwal, R. K., Yun, K. Y., and Balakrishnan, R. “Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime,” Phys. Fluids 13, 3061–3085, 2001.
Alder, B. J. & Wainwright, T. E., “Studies in molecular dynamics,” J. Chemical Phys. 27, 1208–1209, 1957.
Arkilic, E. B., Schmidt, M. A., and Breuer, K. S. “Gaseous slip flow in long microchannels,” J. Microelectromech. Systems 6, 167–178, 1997.
Aubert, C. & Colin S. “High-order boundary conditions for gaseous flows in rectangular microducts,” Microscale Thermophys. Eng. 5, 41–54, 2001.
Aung, W., Fletcher, L. S., and Sernas, V. “Developing laminar free convection between vertical plates with asymmetric heating,” Int. J. Heat Mass Transfer 15, 2293–2308, 1972.
Azevedo, L. F. A. & Sparrow, E. M. “Natural convection in open ended inclined channels,” J. Heat Transfer, Trans. ASME 107 893–901, 1985.
Barber R. & Emerson, D. R., “Challenges in modeling gas-phase flow in microchannels: from slip to transition,” 3rd ASME ICMM2005 paper 75074, 13–15, 2005.
Bejan, A. “Convection heat transfer,” New York: Wiley, 1995.
Beskok, A. “Simulations and models for gas flows in microgeometrics,” Ph.D. thesis, University of Princeton, Princeton, NJ, 1996.
Beskok, A. “Validation of a new velocity-slip model for separated gas microflows. Numer,” Heat Transfer, Part B 40, 451–471, 2001.
Beskok A. & Karniadakis, G. E. “A model for flows in channels, pipes, and ducts at micro and nano scales,” Microscale Thermophys. Eng. 3, 43–77, 1999.
Bird, G. A. “Approach to translational equilibrium in a rigid sphere gas,” Phys. Fluids 6, 1518–1519, 1963.
Bird, G. A. “Monte Carlo simulation of gas flows,” Annu. Rev. Fluid Mech. 10, 11–31, 1978.
Bird, G. A. “Molecular gas dynamics and the direct simulation of gas flows,” New York: Oxford University Press, 1994.
Burgdorfer, A. “The influence of molecular mean free path on the performance of hydrodynamic gas lubricated bearings,” ASME J. Basic Eng. 81, 94–100, 1959.
Cercignani, C. “Higher order slip according to the linearized Boltzmann equation,” Institute of Engineering Research Report AS-64–19, University of California, Berkeley, 1964.
Cercignani, C. “The Boltzmann equation and its applications,” New York: Springer, 1988.
Chapman, S. & Cowling, T. “Mathematical theory of non-uniform gases (3rd edn),” London: Cambridge University Press, 1970.
Chen, C. K. & Weng, H. C. “Natural convection in a vertical microchannel,” ASME J. Heat Transfer 127, 1053–1056, 2005.
Colin, S., Lalonde P, and Caen, R. “Validation of a second-order slip flow model in rectangular microchannels,” Heat Transf. Eng. 25, 23–30, 2004.
Deissler, R. G. “An Analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases,” Int. J. Heat Mass Transfer 7, 681–694, 1964.
Eckert, E. R. G. & Drake, R. M., Jr. “Analysis of heat and mass transfer,” New York: McGraw–Hill, 1972.
El-Shaarawi, M. A. I. & Sarhan, A. “Developing laminar free convection in a heated vertical open-ended concentric annulus,” Ind. Eng. Chem. Fundam. 20, 388−394, 1981.
Elenbaas, W. “Heat dissipation of parallel plates by free convection,” Physica (Amsterdam) 9, 1–28, 1942.
Elizarova, T. G. & Sheretov, Y. V. “Analysis of gas flow in micro-channels using quasi-hydrodynamic (QHD) equations,” Houille Blanche-Rev. Int. 66−72, 2003.
Enskog, D. “Uber ein verallgemeinerung der zweiten Maxwellschen theorie der gase,” Physik. Zeitschr. 12, 56, 1911a.
Enskog, D. “Bemerkungen zu einer fundamentalgleichung in der kinetischen gastheorie,” Physik. Zeitschr. 12, 533–539, 1911b.
Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., “Buoyancy-induced flows and transport,” New York: Hemisphere, 1988.
Grad, H. “On the kinetic theory of rarefied gases,” Comm. Pure Appl. Math. 2, 331–407, 1949.
Graur, I. A., Meolans, J. G., and Zeitoun, D. E. “Gaseous flows in the microchannels. In: Capitelly M (ed) Proceedings of 24th international symposium on rarefied gas dynamics,” AIP Conference Proceedings 762, 755–760, 2004.
Graur, I. A., Meolans, J. G., and Zeitoun, D. E. “Analytical and numerical description for isothermal gas flows in microchannels,” Microfluid Nanofluid 2, 64–77, 2006.
Haddad, O. M., Abuzaid, M. M., and Al-Nimr, M. A. “Developing free-convection gas flow in a vertical open-ended microchannel filled with porous media,” Numer. Heat Tranf. A-Appl. 48, 693–710, 2005.
Hadjiconstantinou, N. G. “Comment on Cercignani's second-order slip coefficient,” Phys. Fluids 15, 2352–2354, 2005.
Hadjiconstantinou, N. G. “Validation of a second-order slip model for dilute gas flow,” Microscale Thermophys. Eng. 9, 137–153, 2003.
Harley, J. C. “Compressible gas flow in micron and submicron sized channels,” MS thesis, University of Pennsylvania, Philadelphia, 1991.
Harley, J. C., Huang, Y. H., Bau, H., and Zemel, J. N. “Gas flow in microchannels,” J. Fluid Mech 284, 257–274, 1995.
Haviland, J. K. & Levin, M. L. “Application of Monte Carlo method to heat transfer in rarefied gases,” Phys. Fluids 5, 1399–1405, 1962.
Hsia, Y. T. & Domoto, G. A. “An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances,” ASME J. Lubrication Tech. 105, 120–130, 1983.
Ivanov, M. S. & Gimelshein, S. F. “Computational hypersonic rarefied flows,” Ann. Rev. Fluid Mech. 30, 469–505, 1998.
Jie, D., Diao, X., Cheong, K. B., and Yong, L. K. “Navier-Stokes simulations of gas flow in micro devices,” J. Micromech. Microeng. 10, 372–379, 2000.
Karniadakis, G. E. & Beskok A. “Micro flows,” New York: Springer-Verlag, 2002.
Kennard, E. H. “Kinetic theory of gasses,” New York: McGraw-Hill, 1938.
Kihm, K. D., Kim, J. H., and Fletcher, L. S. “Investigation of natural convection heat transfer in converging channel flows using a specklegram technique,” J. Heat Transfer, Trans. ASME 115, 140–148, 1993.
Lockerby, D. A., Reese, J. M., Emerson, D. R., and Barber, R. W. “Velocity boundary condition at solid walls in rarefied gas calculations,” Phys. Rev. E 70, 017303, 2004.
Maxwell, J. C. “On stress in rarefied gases from inequalities of temperature,” Philos. Trans. R. Soc. London 170, 231–256, 1879.
Munson, B. R., Young, D. F., and Okiishi, T. H. “Fundamentals of fluid mechanics,” 3rd ed., New York: John Wiley & Sons, Inc, 1998.
Nguyen, N. T. & Wereley, S. “Fundamentals and applications of microfluidics,” Boston, MA: Artech House, 2002.
Ohwada, T., Sone, Y., and Aoki, K. “Numerical analysis of the Poiseuille and thermal creep flows between parallel plates on the basis of the Boltzmann equation for hard-sphere molecules,” Phys. Fluids A 1, 2042–2049, 1989.
Pfahler, J., Harley, J. C., Bau, H., and Zemel, J. N. “Gas and liquid flow in small channels,” ASME DSC 32, 49–60, 1991.
Pong, K. C., Ho, C. M., Liu, J., and Tai, Y. C. “Nonlinear pressure distribution in Uniform microchannel,” In: Application of microfabrication to fluid mechanics, ASME FED 196, 51–56, 1994.
Quintiere, J. & Mueller, W. K. “An analysis of laminar free and forced convection between finite vertical parallel plates,” J. Heat Transfer, Trans. ASME 95, 53−59, 1973.
Roy, S., Raju, R., Chuang, H. F., Cruden, B. A., and Meyyappan, M. “Modeling gas flow through microchannels and nanopores,” J. Applied Physics 93, 4870–4879, 2003.
Schaaf, S. A. & Chambre, P. L. “Flow of rarefied gases,” Princeton: Princeton University Press, 1961.
Schamberg, R. “The fundamental differential equations and the boundary conditions for high speed slip-flow, and their application to several specific problems,” Ph.D. thesis, California Institute of Technology, Pasadena, 1947.
Schlichting, H. “Boundary-layer theory,” New York: McGraw-Hill, 1979.
Suryanarayana, N. V. “Engineering heat transfer,” New York: West Publishing Company, 1995.
Tsuboi, N. & Matsumoto, Y. “Experimental and numerical study of hypersonic rarefied gas flow over flat plates,” AIAA Journal 43, 1243–1255, 2005.
Zohar, Y., Lee, S. Y. K., Lee, W. Y., Jiang, L. N., and Tong, P. “Subsonic gas flow in a straight and uniform microchannel,” J. Fluid Mech. 472, 125–151, 2002.