研究生: |
廖俊侯 Liao, Chun-Hou |
---|---|
論文名稱: |
具方向性鍵結的二氧化鈦在染料敏化太陽能電池之應用 Dye-Sensitized Solar Cells Based on an Oriented Attachment Anatase TiO2 Secondary Structure |
指導教授: |
郭炳林
Kuo, Ping-Lin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 方向性鍵結 、二氧化鈦 、紅汞 、染料敏化太陽能電池 |
外文關鍵詞: | DSSC, oriented attachment, TiO2, Mercurochrome |
相關次數: | 點閱:59 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用新穎的界面活性劑TEOA-C10製備出anatase二次結構的二氧化鈦,此二次結構是由許多的奈米粒子所組成,且粒子與粒子間的晶格藉著方向性鍵結(oriented attachment)的機制產生相同方向的排列,因此具有較快的電子傳遞速度。二氧化鈦的粒徑與二次結構,可藉由TEOA-C10的濃度來控制,且水熱溫度亦可調整其粒徑、二次結構及熱穩定性。
利用本實驗所製備出的二氧化鈦製作成光電極時,其染料吸附能力為商用品P25的4~5倍;因此使用此光電極與紅汞(Mercurochrome)組裝成染料敏化太陽能電池時,在2微米厚度即可達到1.31%的轉化效率。如果將此二氧化鈦與P25製作成雙層的光電極時,則anatase TiO2層可以幫助P25層中的電子傳導至外電路,因此可使短路電流(Jsc)具有大幅度的提升,而當光電極的組成為(anatase TiO2 0.5微米 + P25 6微米)與(anatase TiO2 1.0微米 + P25 3微米)時,具有最佳的轉換效率-1.68~1.69%。最後將染料換成N719時,添加此層仍然能夠有效的增加光電流,其轉換效能可由3.91%增加至4.57%。
In this study, a novel surfactant TEOA-C10 was synthesized to prepare anatase titania nanoparticles with secondary structures by a surfactant-assisted self-assembling process. The crystal lattice planes of the second structure were aligned with each other due to the “oriented attachment” mechanism, which is expected to increase the rate of electron transfer through the highly crystallized second structure. The grain size and secondary structure were controlled by changing the mole ratio of TEOA-C10 to titanium precursor and the temperature of the hydrothermal via control of the grain size, second structure, and thermal stability for the TiO2 second structure. A single-crystalline anatase photoelectrode adsorbed mercurochrome dye about 4~5 times higher as compared to P25.
A light-to-electricity conversion yield of 1.31% was achieved by applying the titania nanomaterials with 2 micrometer thin film, and it can increase to 1.68~1.69%, if using double layer photoelectrode made by anatase titania nanoparticle and P25. When the dye was changed from mercurochrome to N719, double layer still can improve the light-to-electricity conversion efficiency from 3.91% to 4.57%.
1. 張正華, 李陵嵐, 葉楚平, and 楊平華, 有機與塑膠太陽能電池. (五南出版社, 台北市, 民96).
2. 陳維新, 能源概論. (高立出版社, 台北縣, 民95).
3. B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature 353 (6346), 737-740 (1991).
4. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, "Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "Oriented Attachment" Mechanism," J. Am. Chem. Soc. 126 (45), 14943-14949 (2004).
5. 莊萬發, 超微粒子理論應用. (復漢出版社, 台南市, 民84).
6. G. Schmid, Clusters and colloids :from theory to applications (VCH, Weinheim, 1994).
7. L. Thomas, M. Paul, and H. Arnim, "Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate " J. Phys. Chem. 97 (3), 679-682 (1993).
8. U. Diebold, "The Surface Science of Titanium Dioxide," Surf. Sci. Rep. 48 (5-8), 53-229 (2003).
9. H. Zhang and J. F. Banfield, "Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2," J. Phys. Chem. B 104 (15), 3481-3487 (2000).
10. R. Campostrini, M. Ischia, and L. Palmisano, "Pyrolysis study of sol-gel derived TiO2 powders: Part III. TiO2-anatase prepared by reacting titanium(IV) isopropoxide with acetic acid," Journal of Thermal Analysis and Calorimetry 75 (1), 13-24 (2004).
11. S. Funda, A. Meltem, S. Hikmet, Ö. Yunus, A. Murat, and A. Ertuğrul, "Characterization of TiO2 Synthesized in Alcohol by a Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst," Turk. J. Chem. 29 (6), 697-706 (2005).
12. H. Judy, B. Laure, C. Raoul, C. Yi-Bing, S. George, and S. Leone, "Low temperature crystallization behavior of TiO2 derived from a sol-gel process " J. Sol-Gel Sci. Technol. 42 (2), 107-117 (2007).
13. W. Li, S. S. Ismat, C.-P. Huang, O. Jung, and C. Ni, "Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles " Materials Science and Engineering: B 96 (3), 247-253 (2002).
14. G. L. Li and G. H. Wang, "Synthesis of nanometer-sized TiO2 particles by a microemulsion method " NanoStructured Materials 11 (5), 663-668 (1999).
15. H. N. Ghosh and S. Adhikari, "Trap State Emission from TiO2 Nanoparticles in Microemulsion Solutions," Langmuir 17 (13), 4129-4130 (2001).
16. B. DeBenedetti, D. Vallauri, F. Deorsola, and M. Garcia, "Synthesis of TiO2 nanospheres through microemulsion reactive precipitation," Journal of Electroceramics 17 (1), 37-40 (2006).
17. W. S. Nam and G. Y. Han, "A Photocatalytic Performance of TiO2 Photocatalyst Prepared by the Hydrothermal Method," Korean J. Chem. Eng. 20 (1), 180-184 (2002).
18. Q. Zhang and L. Gao, "Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile TiO2," Langmuir 19 (3), 967-971 (2003).
19. A. V. Murugan, V. Samuel, and V. Ravi, "Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method," Mater. Lett. 60 (4), 479-480 (2005).
20. U. Schubert, "Chemical modification of titanium alkoxides for sol–gel processing " J. Mater. Chem. 15 (35-36), 3701-3715 (2005).
21. G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis. (VCH, Weinheim, 1997).
22. M. Gratzel, "Photoelectrochemical cells," Nature 414 (6861), 338-344 (2001).
23. N. G. Park, J. van de Lagemaat, and A. J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells," J. Phys. Chem. B 104 (38), 8989-8994 (2000).
24. T. Beppu, S. Yamaguchi, and S. Hayase, "Improvement of Heat Resistant Properties of TiO2 Nanowires and Application to Dye-Sensitized Solar Cells," Jpn. J. Appl. Phys. 46 (7), 4307-4311 (2007).
25. B. Tan and Y. Wu, "Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites," J. Phys. Chem. B 110 (32), 15932-15938 (2006).
26. A. Keisuke, N. Supachai, S. Yoshikazu, and Y. Susumu, "Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells," Central European Journal of Chemistry 5 (2), 605-619 (2007).
27. S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, and Y.-E. Sung, "Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency," Advanced Materials 20 (1), 54-58 (2008).
28. T. Sugimoto, X. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control " J. Colloid Interface Sci. 259 (1), 43-52 (2003).
29. T. Sugimoto, X. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 4. Shape control " J. Colloid Interface Sci. 259 (1), 53-61 (2003).
30. S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, and S. Yoshikawa, "Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure " J. Photochem. Photobiol. A-Chem. 184 (1-2), 163-169 (2006).
31. J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film," J. Phys. Chem. B 110 (5), 2087-2092 (2006).
32. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications," Journal of the American Ceramic Society 80 (12), 3157-3171 (1997).
33. D. Zhang, J. A. Downing, F. J. Knorr, and J. L. McHale, "Room-Temperature Preparation of Nanocrystalline TiO2 Films and the Influence of Surface Properties on Dye-Sensitized Solar Energy Conversion," J. Phys. Chem. B 110 (43), 21890-21898 (2006).
34. T. Ma, T. Kida, M. Akiyama, K. Inoue, S. Tsunematsu, K. Yao, N. Hiroaki, and E. Abe, "Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique " Electrochem. Commun. 5 (4), 369-372 (2003 ).
35. E. Lancelle-Beltran, P. Prene, C. Boscher, P. Belleville, P. Buvat, S. Lambert, F. Guillet, C. Boissiere, D. Grosso, and C. Sanchez, "Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films," Chem. Mater. 18 (26), 6152-6156 (2006).
36. Y. Zhao, X. Sheng, J. Zhai, L. Jiang, C. Yang, Z. Sun, Y. Li, and D. Zhu, "TiO2 Porous Electrodes with Hierarchical Branched Inner Channels for Charge Transport in Viscous Electrolytes," ChemPhysChem 8 (6), 856-861 (2007).
37. Y. Zhao, J. Zhai, S. Tan, L. Wang, L. Jiang, and D. Zhu, "TiO2 micro/nano-composite structured electrodes for quasi-solid-state dye-sensitized solar cells," Nanotechnology 17 (9), 2090-2097 (2006).
38. S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, "Flexible dye-sensitized solar cells by 28GHz microwave irradiation " J. Photochem. Photobiol. A-Chem. 164 (1-3), 93-96 (2004).
39. G. Boschloo, H. Lindström, E. Magnusson, A. Holmberg, and A. Hagfeldt, "Optimization of dye-sensitized solar cells prepared by compression method " J. Photochem. Photobiol. A-Chem. 148 (1-3), 11-15 (2002).
40. D. Zhang, T. Yoshida, and H. Minoura, "Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface," Advanced Materials 15 (10), 814-817 (2003).
41. M. Murayama, E. Yamazaki, N. Nishikawa, N. Hashimoto, and T. Mori, "Low-Temperature Fabrication of TiO2 Necking Electrode by Sol–Gel Method and its Application to Dye-Sensitized Solar Cell," Jpn. J. Appl. Phys. 45 (10), 7917-7921 (2006).
42. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Gratzel, "Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals," J. Phys. Chem. B 107 (51), 14336-14341 (2003).
43. A. Kwang-Soon, K. Moon-Sung, L. Ji-Won, and K. Yong Soo, "Effects of a surfactant-templated nanoporous TiO2 interlayer on dye-sensitized solar cells," J. Appl. Phys. 101 (8), 084312 (2007).
44. L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Pan, L. Liang, and K. Wang, "Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules," J. Phys. Chem. B 111 (2), 358-362 (2007).
45. Z. S. Wang, M. Yanagida, K. Sayama, and H. Sugihara, "Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency," Chem. Mater. 18 (12), 2912-2916 (2006).
46. S. Lee, J. Y. Kim, S. H. Youn, M. Park, K. S. Hong, H. S. Jung, J. K. Lee, and H. Shin, "Preparation of a Nanoporous CaCO3-Coated TiO2 Electrode and Its Application to a Dye-Sensitized Solar Cell," Langmuir 23 (23), 11907-11910 (2007).
47. J. Bandara, U. W. Pradeep, and R. G. S. J. Bandara, "The role of n-p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells " J. Photochem. Photobiol. A-Chem. 170 (3), 273-278 (2005).
48. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, "Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers," J. Am. Chem. Soc. 125 (2), 475-482 (2003).
49. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, "Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells," J. Phys. Chem. B 107 (2), 597-606 (2003).
50. K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, "Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells," Langmuir 20 (10), 4205-4210 (2004).
51. Z. S. Wang, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, and H. Sugihara, "Photophysical and (Photo)electrochemical Properties of a Coumarin Dye," J. Phys. Chem. B 109 (9), 3907-3914 (2005).
52. K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, and S. Suga, "Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells," J. Phys. Chem. B 109 (32), 15476-15482 (2005).
53. Z.-S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada, and A. Shinpo, "A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells," Advanced Materials 19 (8), 1138-1141 (2007).
54. A. F. Nogueira, J. R. Durrant, and M. A. D. Paoli, "Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte," Advanced Materials 13 (11), 826-830 (2001).
55. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, "Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine," J. Phys. Chem. B 105 (51), 12809-12815 (2001).
56. J. Joseph, K. M. Son, R. Vittal, W. Lee, and K.-J. Kim, "Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte," Semicond. Sci. Technol. 21 (5), 697–701 (2006).
57. H.-J. Lee, W.-S. Kim, S.-H. Park, W. S. Shin, S.-H. Jin, J.-K. Lee, S.-M. Han, K.-S. Jung, and M.-R. Kim, "Effects of Nanocrystalline Porous TiO2 Films on Interface Adsorption of Phthalocyanines and Polymer Electrolytes in Dye-Sensitized Solar Cells," Macromolecular Symposia 235 (1), 230-236 (2006).
58. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature 395 (6702), 583-585 (1998).
59. Y. J. Kim, J. H. Kim, M.-S. Kang, M. J. Lee, J. Won, J. C. Lee, and Y. S. Kang, "Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells," Advanced Materials 16 (19), 1753-1757 (2004).
60. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel, and A. J. Frank, "Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells," J. Phys. Chem. B 101 (14), 2576-2582 (1997).
61. H. Kusama and H. Arakawa, "Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance," Journal of Photochemistry and Photobiology A: Chemistry 160 (3), 171-179 (2003).
62. H. Kusama and H. Arakawa, "Influence of aminothiazole additives in I-/I3- redox electrolyte solution on Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell performance," Solar Energy Materials and Solar Cells 82 (3), 457-465 (2004).
63. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura, and K. Murata, "High-performance carbon counter electrode for dye-sensitized solar cells," Solar Energy Materials and Solar Cells 79 (4), 459-469 (2003).
64. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," J. Electrochem. Soc. 153 (12), A2255-A2261 (2006).