簡易檢索 / 詳目顯示

研究生: 姜哲宇
Chieng, Che-Yu
論文名稱: 差動式蘭姆波壓電感測系統應用於平板之無參考訊號觸控定位
Differential Sensing of Lamb Wave Using Piezoelectric Transducer for Baseline Free Tactile Sensing on a Plate
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 蘭姆波觸控辨識卷積神經網路深度學習壓電換能器無參考訊號
外文關鍵詞: Lamb waves, touch recognition, convolutional neural networks, deep learning, piezoelectric transducers, reference-free signals
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以蘭姆波和壓電換能器實現無參考訊號之超聲波觸控面板技術;此技術使用玻璃作為觸控面板材料,於玻璃上下表面放置壓電換能器 (Piezoelectric Transducer) 形成一對壓電傳感器,做為聲波訊號的發送端與接收端。首先藉由同時輸出正負電壓於發送端的二個傳感器,可以激振出A-mode或S-mode的蘭姆波 (Lamb Wave) 於薄板中;透過接收端之一對傳感器所接收到之蘭姆波訊號的疊加或相減,可以實現單一模態蘭姆波的激振和接收。比較手指未觸控與觸控面板對蘭姆波能量的衰減變化,即可即時獲知手指是否觸碰玻璃板以及觸碰的正確位置。此一系統無需事先存取一組基礎訊號進行比對,因此可以達到無參考 (Baseline Free) 訊號的工作模式,並結合人工智慧使用深度學習 (Deep Learning) 演算法的卷積神經網路 (Convolution Neural Networks, CNN) 進行資料分析,根據大量的衰減特徵波形做為訓練數據,產生一種最佳的演算法模型,實現即時觸控辨識。
    針對本研究所完成之以蘭姆波和壓電換能器結合卷積神經網路應用於玻璃面板無參考訊號之觸控定位系統,以真實的人體手指進行實測後,能在感測面積150×150 mm2、觸控解析度為1×1 cm2的玻璃面板上達到95.5%觸碰準確度,反應時間約為50至55 ms,即具有20 Hz的更新速率,驗證此設計與架構的可行性與實用價值。

    This study implemented a Lamb wave-based ultrasonic touch panel technology in a baseline-free manner. A glass plate was chosen as the touch panel, and piezoelectric transducers were utilized as the signal transmitters and receivers. Pairs of piezoelectric transducers are mounted on both sides of the glass plate so that pure anti-symmetrical mode or symmetrical mode Lamb waves can be excited and detected in the glass plate by applying positive and negative voltages to the paired piezoelectric transducers. By directly comparing the attenuation of Lamb wave energy caused by finger touch on the touch panel without accessing a set of reference signals for comparison, a reference-free signal was achieved. A convolutional neural network (CNN) was employed as the deep learning algorithm, using a large number of attenuation feature waveforms for data and training to generate an optimal algorithm model for real-time touch recognition.
    This thesis demonstrated the feasibility and practical value of employing Lamb wave-based ultrasonic touch panel technology in a wide range of applications. Real finger testing on a sensing area of 150×150 mm² achieved a touch accuracy of 95.5% with a touch resolution of 1×1 cm². The response time was approximately 50-55 ms, and the update rate was 20 Hz. These results highlight the potential of this design and architecture and validate the effectiveness of the deep learning algorithm.

    摘要 I Abstract III 誌謝 XVII 目錄 XIX 圖目錄 XXII 表目錄 XXVIII 第一章 導論 1 1.1 研究背景與目的 1 1.2 文獻回顧 4 1.3 論文架構 8 第二章 理論背景 9 2.1 聲波與蘭姆波 9 2.1.1 體波與波導 9 2.1.2 蘭姆波理論 11 2.2 壓電材料與壓電效應 17 2.2.1 壓電材料 17 2.2.2 壓電效應 18 2.3 人工智慧理論 19 2.3.1 人工智慧 20 2.3.2 機器學習 21 2.3.3 類神經網路 23 2.3.4 卷積神經網路 28 第三章 差動式與單一模態蘭姆波觸控實驗 35 3.1 單一模態蘭姆波收發 35 3.1.1 實驗架構 35 3.1.2 實驗方法 38 3.2 單一模態蘭姆波實驗結果分析 44 3.3 單一模態蘭姆波觸控變化 59 第四章 無參考訊號之超音波觸控面板 74 4.1 無參考訊號之超音波觸控面板架構與方法 74 4.1.1 實驗架構 74 4.1.2 實驗方法 79 4.2 無參考訊號之超音波觸控面板資料收集 84 4.2.1 明膠與手指蘭姆波變化比較 84 4.2.2 自動擷取系統 87 4.3 無參考訊號之超音波觸控面板人工智慧演算法 91 4.3.1 訓練資料的預處理 91 4.3.2 訓練模型參數設定 96 4.4 實際觸控測試 102 第五章 結論與未來展望 108 5.1 結論 108 5.2 未來展望 110 參考文獻 111

    [1] Jain, D. Bhargava, and A. Rajput, “Touch-Screen Technology,” International Journal of Advanced Research in Computer Science and Electronics Engineering, vol. 2, no. 1, pp. 74-78, 2013.

    [2] G. Walker, “A review of technologies for sensing contact location on the surface of a display,” J. Soc. Inf. Display, vol. 20, no. 8, pp. 413-440, 2012.

    [3] R. Adler and P. J. Desmares, “An economical touch panel using SAW absorption,” IEEE Trans. Ultrasonics, Ferroelectrics, Freq. Control, vol. 34, no. 2, pp. 195-201, 1987.

    [4] K. North and H. D’Souza, “Acoustic pulse recognition enters touch-screen market,” Inf. Display, vol. 12, pp. 22-25, 2006.

    [5] S. Reis et al., “Touchscreen based on acoustic pulse recognition with piezoelectric polymer sensors,” in Proc. IEEE Int. Symp. Ind. Electron., pp. 516-520, 2010.

    [6] V. G. Reju, A. W. H. Khong, and A. B. Sulaiman, “Localization of taps on solid surfaces for human-computer touch interfaces,” IEEE Trans. Multimedia, vol. 15, no. 6, pp. 1365-1376, 2013.

    [7] Y. Liu, J. P. Nikolovski, N. Mechbal, M. Hafez, and M. Vergé, “A multi-touch plate based on lamb wave absorption,” Procedia Chem., vol. 1, no. 1, pp. 156-159, 2009.

    [8] Y. Liu, J. P. Nikolovski, N. Mechbal, M. Hafez, and M. Vergé, “An acoustic multi-touch sensing method using amplitude disturbed ultrasonic wave diffraction patterns,” Sens. Actuators A, Phys., vol. 162, no. 2, pp. 394-399, 2010.

    [9] Y.-T. Lin and Y.-C. Lee, “Application of Piezoelectric Actuator/Sensor and Lamb Wave for Touch Recognition,” M.S. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2017.

    [10] R. Adler and P. J. Desmares, “An economical touch panel using SAW absorption,” IEEE Ultrasonics Symposium, vol. 1, pp. 499-502, 1985.

    [11] R. Adler and P. J. Desmares, “SAW Touch Systems on Spherically Curved Panels,” IEEE 1986 Ultrasonics Symposiums, Williamsburg, Virginia, USA, Nov. 17-19, 1986.

    [12] Y. Tanaka, M. Takeuchi, J. L. Aroyan, and J. Kent, “P2I-2 Characteristics of SAW Grating Reflectors with Arbitrary Angels of Indices in Ultrasonic Touch Sensors,” 2006 IEEE Ultrasonics Symposiums, Vancouver, British Columbia, Canada, Oct. 2-6, 2006.

    [13] A. Raghavan and Carlos E. S. Cesnik, “3-D Elasticity-Based Modeling of Anisotropic Piezocomposite Transducers for Guided Wave Structural Health Monitoring,” ASME Journal of Vibration and Acoustic, vol. 129, no. 6, pp. 739-751, 2007.

    [14] A. Rahavan and Carlos E. S. Cesnik, “Modeling of Piezoelectric-Based Lamb Wave Generation and Sensing for Structural Health Monitoring,” Smart Structures and Materials, San Diego, California, Jul. 29, 2004.

    [15] K. Firouzi, A. Nikoozadeh, and B. T. Khuri-Yakub, “Numerical Modeling of Ultrasonic Touchscreen,” IEEE International Ultrasonics Symposium Proceedings, Chicago, Illinois, USA, Sept. 3-6, 2014.

    [16] K. Firouzi, A. Nikoozadeh, T. E. Carver, and B.T. khuri-Yakub, “Lamb Wave Multitouch Ultrasonic Touchscreen,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 12, pp. 2174-2186, 2016.

    [17] Warren S. McCulloch, Walter Pitts, "A logical calculus of the ideas immanent in nervous activity", The bulletin of mathematical biophysics, vol. 5, pp. 115-133 (1943).

    [18] E. Kuriscak, P. Marsalek, J. Stroffek, P. G. Toth, “Biological context of Hebb learning inartificial neural networks: a review,” Neurocomputing 152 (2015) 27-35
    [19] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychological Review Vol.65 No.6 (1958)

    [20] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning representations by back-propagating errors,” Nature Vol.323 (1986)

    [21] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-Based Learning Applied to Document Recognition, ” IEEE (1998)

    [22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, (2012)

    [23] V. Ewald, R. M. Groves, and R. Benedictus, “DeepSHM: A Deep Learning Approach for Structural Health Monitoring Based on Guided Lamb Wave Techniques,” SPIE Smart Structure + Nondestructive Evaluation, Denver, Colorado, USA, Mar. 3-7, 2019.

    [24] C.-S. Chang, Y.-C. Lee, and Y.-C. Wang, “An Ultrasonic Touchscreen Sensors Based on Piezoelectric Transducers and Artificial Intelligence,” M.S. Thesis, Department of Mechanical Engineering, National Chung Kung University, Tainan, Taiwan, 2019.

    [25] Y.-T. Chen, Y.-C. Lee, and Y.-C. Wang, “Machine Learning Applied to Ultrasonic Touch,” M.S. Thesis, Department of Mechanical Engineering, National Chung Kung University, Tainan, Taiwan, 2019.

    [26] T.-P. Huang, Y.-C. Lee, and Y.-C. Wang, “Lamb Wave and Piezoelectric Transducers Applied to Ultrasonic Touch Panel with Artificial Intelligence,” M.S. Thesis, Department of Mechanical Engineering, National Chung Kung University, Tainan, Taiwan, 2019.

    [27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolution Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp.84-97, 2017.

    [28] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

    [29] Pieter-Tjerk de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A Tutorial on the Cross-Entropy Method,” Annals of Operations Research, vol. 134, no.1, pp. 19-67, 2005.

    [30] D. P. Kingma, J. Ba, “Adam: A method for Stochastic Optimization,” 3rd International Conference on Learning Representations, San Diego, California, May. 7-9, 2015.

    無法下載圖示 校內:2028-08-28公開
    校外:2028-08-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE