簡易檢索 / 詳目顯示

研究生: 陳逸修
Chen, Yi-Xiu
論文名稱: 開發鋰微型電池的關鍵改質策略以實現快速充電和長壽效能
Development of Key Modification Strategies for Lithium Microbattery Achieving Fast-Charging and Longevity Capability
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 172
中文關鍵詞: 鋰離子電池快充性質薄膜鋰電池鋰微型電池
外文關鍵詞: Lithium-ion battery, Fast-charging, Thin-film lithium battery, Lithium Microbattery
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著加快全球電動車(EVs)的普及和改善消費性電子產品的用戶體驗,快速充電技術的發展已成為不可避免的趨勢。因此,美國能源部已將極速充電程序立下純電車和油電混合車的大規模普及、減少溫室氣體排放並增強國家能源安全的標竿。實現極快充性能,關鍵在下一代達成高功率15分鐘內充飽電的水準(大於5 C測試條件),促進多個層次的研究和開發,鋰離子電池技術在應對快速充電的核心技術障礙方面發揮了關鍵作用。
    在高速率下充電時,電池反應的幾種極化特性(如歐姆、濃度和電化學極化)將會導致嚴重問題,如低活性材料利用率、負極鍍鋰及枝晶成長和熱失控等。其中最關鍵的因素之一是臨界電流密度,需要綜合評估以下電池特性,包括導離性、導電性、界面阻抗、過電位、鋰枝晶成長和電化學穩定性。為了克服這些限制,本論文旨在從材料設計的合理性和微結構的視角切入。列舉常用的薄膜電池材料的關鍵改質策略,包括鋰鈷氧正極、矽基負極和鋰鑭鋯氧固態電解質。目前這一項尚未被單一研究團隊獨立解決,因而具有重要大科學突破。本論文系統性的涵蓋濺射的全固態薄膜電池研究的基本性質、機遇、挑戰和最新進展,以促進新電極材料的使用以及關鍵改質新思維導入。這項研究將深入探討快速充電條件下的詳細電池反應,尤其是那些超過5 C的情況。此外,還將進行一系列電池拆卸失效分析,以深入了解和更直觀地理解活性材料的退化機制。
    這份論文的結果將有助於不斷開發性能更迭的先進鋰電池,並為提升鋰離子儲存能力提供了新見解。總之,我的研究旨在提供應對這些快充限制的有效的改質策略手法,並刺激更深層的探索次世代高功率、長壽的能源系統的創新複合材料設計。這些策略將適用於各種電池類型,從近代的鋰微型電池到未來的晶片電池。

    With the drive to accelerate the worldwide adoption of electric vehicles (EVs) and improve the user experience in consumer electronics, the advancement of fast-charging technology has become an inevitable trend. As a result, the U.S. Department of Energy has identified extreme fast-charging (XFC) as a critical challenge to ensure the mass adoption of EVs and plug-in hybrid electric vehicles (PHEVs), reduce greenhouse gas emissions, and enhance national energy security. The realization of XFC, with a goal of achieving a 15-minute charge time (greater than 5C) for the next-generation high-power EVs, has accelerated research and development across multiple levels, with lithium-ion batteries (LIBs) technologies playing pivotal roles in addressing the core technical barriers to fast charging. When charging at high C-rates, several types of polarization (ohmic, concentration, and electrochemical) inside the battery cells can lead to serious problems, such as limited utilization of active materials, lithium plating, and thermal runaway. To achieve the goal of fast-charging, which depends on various factors, including ionic/electronic conductivity, interfacial resistance, overpotential, dendrite formation, and electrochemical stability.
    To overcome these limitations, this thesis aims to promote key modification strategies in commonly used thin-film battery materials, including Lithium cobalt oxide (LCO) cathodes, silicon (Si) anodes, and Lithium lanthanum zirconium oxide (Li7La3Zr2O12, LLZO) solid electrolytes, from the perspective of rational materials design and microstructure. Overcoming this formidable challenge, which has yet to be successfully addressed by anyone worldwide, holds great significance. This thesis extensively covers the fundamental properties, opportunities, challenges, and the latest progress of sputtered all-solid-state thin-film batteries research to facilitate the use of new electrode materials. This research will delve into the detailed battery reactions under fast-charging conditions, particularly those exceeding 5C. Additionally, a series of battery disassembly failure analyses will be conducted to gain deeper insights and a more intuitive understanding of degradation mechanisms.
    This study contributes to the ongoing efforts in developing next-generation LIBs with improved performance and provides insights into the design of LIBs with enhanced energy storage capabilities. In conclusion, our research aims to provide new approaches to tackle these limitations, inspiring battery research to explore innovative composite materials design for next-generation high-power and cyclical stability energy storage systems. These rational designs are well-suited for a variety of battery types, from advanced Li-ion micro-batteries and all-solid-state batteries to the batteries-on-a-chip of the future.

    中文摘要 iii Abstract iv Acknowledgments v Chapter 1 Introduction 1 1.1 Development of lithium-ion batteries and their materials 1 1.2 Challenges and opportunities towards fast-charging battery 3 1.3 Prospective research of lithium microbattery 8 Chapter 2 Literature Review 17 2.1 Fabrication of lithium microbattery 17 2.1.1 Electrochemical deposition (ECD) 18 2.1.2 Chemical vapor deposition (CVD) 19 2.1.3 Atomic layer deposition (ALD) 21 2.1.4 Printing technique 22 2.1.5 Thermal evaporation (TE) 24 2.1.6 Pulse laser deposition (PLD) 26 2.1.7 Magnetron radio frequency sputtering (magnetron RF-sputtering) 28 2.2 Brief introduction of film-type of cathode materials 30 2.2.1 LFP Olivine cathode (LiFePO4) 31 2.2.2 LNMO Spinel cathode (LiN0.5Mn1.5O4) 32 2.2.3 LMO Layered oxide cathode (LiMO2, M = Co, Ni, Mn, Al et al, and mixing ion) 34 2.3 Brief introduction of film-type of anode materials 37 2.3.1 Graphite based anode 38 2.3.2 Lithium titanate based anode (Li4Ti5O12, LTO) 40 2.3.3 Silicon anode (Si) 41 2.3.4 Composited materials anode 44 2.4 Brief introduction of solid-state electrolyte from pellet-type toward thin-film-type 45 2.4.1 The main obstacles of film-type solid-state electrolytes 47 2.4.2 Structure, chemistry, and ionic conductivity properties of garnet-type LLZO 49 2.4.3 Prospective of fast lithium-ion conductor realized by doped-LLZO thin-film solid electrolyte 51 2.5 Kinetics of Li-ion diffusion in materials 52 2.5.1 Electrochemical impedance spectroscopy (EIS) 54 2.5.2 Surface area related Li-ion kinetics (calculated by Randles-Sevcik equation) 59 2.6 Motivation 62 Chapter 3 Research Methodologies 63 3.1 Materials fabrication 63 3.2 Materials Characterization 64 3.2.1 Scanning Electron Microscopy (SEM): 64 3.2.2 Transmission Electron Microscopy (TEM): 65 3.2.3 X-ray diffractometer (XRD) 67 3.2.4 Micro-Raman spectroscopy 68 3.2.5 X-ray photoelectron spectroscopy, XPS 68 3.3 Battery set-up and electrochemical characterization 69 3.3.1 2032-type half-cell coin cell 69 3.3.2 Cyclic voltammetry (CV) 70 3.3.3 Galvanostatic charge/discharge (GCD) of cyclic and C-rate performance 70 3.3.4 Electrochemical impedance spectroscopy and equivalent circuit module 71 Chapter 4 Promoting Stability and Fast-Charging Capability of LiCoO2 Thin-Film Battery beyond 4.5V through MgO Co-Sputtering 72 4.1 Motivation 72 4.2 Material design and preparation for Mg-doped LCO 74 4.3 Results and discussion for Mg-doped LCO 74 4.3.1 Morphology, crystallinity, and bonding structure 74 4.3.2 Dependence of Mg-dopant on Co valence state 76 4.3.3 Microstructure and interface analysis by TEM, SAED pattern and EDS mapping 78 4.3.4 Mg-doping effect on the cycling performance in 3~4.2 V 82 4.3.5 Reducing polarization through incorporating Mg dopant. 83 4.3.6 Mg pillar effect on high voltage (4.5 V) stability 85 4.3.7 Mg-doping effect on rate capability 87 4.3.8 Mg-doping effect on Li-ion transportation 87 4.3.9 Morphology evolution over 100 cycles 89 4.3.10 Ultrahigh-voltage (4.7 V) cyclic fast-charging capability 90 4.3.11 Mechanism of ultrahigh-voltage stability and fast-charging Mg-LCO 92 4.3 Summary for Mg-doped LCO 93 Chapter 5 Interlayer Nanostructure Design for Si-anode Lithium Microbattteries Enabling Extreme Fast-Charging (10C) by Incorporating Silver Nanoparticles 94 5.1 Motivation 94 5.2 Material design and preparation for Si/AgNPs/Si multilayer anode 96 5.3 Results and discussion for Si/AgNPs/Si multilayer anode 97 5.3.1 Morphology and AgNPs distribution 97 5.3.2 Crystallinity, bonding structure, and nanostructure 99 5.3.3 Effect of multilayered structure on rate performance 101 5.3.4 Charge-induced lithiation by AgNPs on rate performance 102 5.3.5 Trade-off study on scalable and battery performance 106 5.3.6 Li-ion diffusion inside Si/AgNPs/Si multilayer anode 108 5.3.7 Mechanism of outstanding performance for Si/AgNPs/Si multilayer anode 110 5.4 Summary for Si/AgNPs/Si multilayer anode 112 Chapter 6 Innovation Pattern Strategies Realizing Stress Relaxation of Si Anodes Lithium Microbatteries toward Extreme Fast-Charging and Longevity 113 6.1 Motivation 113 6.2 Material design and preparation for patterned-Si anode 114 6.3 Results and discussion for patterned-Si anode 115 6.3.1 Morphology evolution of the patterned-Si and its electrochemical performance 115 6.3.2 Potential of the bifunctional non-pattern and inversed-pattern LiPAA layers 118 6.3.3 Characterization of inversed-pattern Si and its electrochemical performance 120 6.3.4 Morphology evolution versus the pattern structure 123 6.3.5 The effect of the patterned-Si anodes on Li-ion transport kinetics 124 6.4 Summary for patterned-Si anode 128 Chapter 7 Comprehensiveness Conclusions and Future Aspects 129 Chapter 8 Reference 131 Publications List 145 International conference participation and achievement 146 近年參與/執行計畫(Participation/execution projects) 147

    [1] D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19.
    [2] D. H. Liu, X. Y. Gao, H. Z. An, Y. B. Qi, Z. Wang, N. F. Jia, Z. H. Chen, Resour. Policy 2020, 69, 10, 101885.
    [3] H. S. Chen, T. N. Cong, W. Yang, C. Q. Tan, Y. L. Li, Y. L. Ding, Prog. Nat. Sci. 2009, 19, 291.
    [4] J. G. Sun, M. C. Li, J. A. S. Oh, K. Y. Zeng, L. Lu, Mater. Technol. 2018, 33, 563.
    [5] M. Li, J. Lu, Z. W. Chen, K. Amine, Adv. Mater. 2018, 30, 24, 1800561.
    [6] G. Berckmans, M. Messagie, J. Smekens, N. Omar, L. Vanhaverbeke, J. Van Mierlo, Energies 2017, 10, 20, 1314.
    [7] Y. Liu, T. Liang, Y. Li, Y. Zhao, Z. Guo, F. Ma, Z. Dai, Mater. Today Energy 2020, 18, 11, 100503.
    [8] S. Zhang, J. Ma, Z. L. Hu, G. L. Cui, L. Q. Chen, Chem. Mat. 2019, 31, 6033.
    [9] X. X. Zuo, J. Zhu, P. Muller-Buschbaum, Y. J. Cheng, Nano Energy 2017, 31, 113.
    [10] A. Manthiram, X. W. Yu, S. F. Wang, Nat. Rev. Mater. 2017, 2, 16, 16103.
    [11] J. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Y. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. H. Yang, X. Q. Yang, J. G. Zhang, Nat. Energy 2019, 4, 180.
    [12] J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
    [13] M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edstrom, C. Ekberg, D. Guyomard, B. Lestriez, P. Novak, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens, H. Zhang, J. Power Sources 2020, 479, 26, 228708.
    [14] M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966.
    [15] W. D. Li, E. M. Erickson, A. Manthiram, Nat. Energy 2020, 5, 26.
    [16] Z. H. Liu, Q. Yu, Y. L. Zhao, R. H. He, M. Xu, S. H. Feng, S. D. Li, L. Zhou, L. Q. Mai, Chem. Soc. Rev. 2019, 48, 285.
    [17] T. Kim, W. T. Song, D. Y. Son, L. K. Ono, Y. B. Qi, J. Mater. Chem. A 2019, 7, 2942.
    [18] J. J. Xu, X. Y. Cai, S. M. Cai, Y. X. Shao, C. Hu, S. R. Lu, S. J. Ding, Energy Environ. Mater., 26.
    [19] David Howell, Steven Boyd, Brian Cunningham, Samm Gillard, L. Slezak, Vol. No. INL/EXT-17-41638 (Ed: U. D. o. Energy), 2017.
    [20] W. L. Cai, Y. X. Yao, G. L. Zhu, C. Yan, L. L. Jiang, C. X. He, J. Q. Huang, Q. Zhang, Chem. Soc. Rev. 2020, 49, 3806.
    [21] Y. Y. Liu, Y. Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540.
    [22] R. Nölle, K. Beltrop, F. Holtstiege, J. Kasnatscheew, T. Placke, M. Winter, Mater. Today 2020, 32, 131.
    [23] M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. M. Wang, W. D. Nix, Y. Cui, Nano Lett. 2013, 13, 758.
    [24] N. Sharma, V. K. Peterson, M. M. Elcombe, M. Avdeev, A. J. Studer, N. Blagojevic, R. Yusoff, N. Kamarulzaman, J. Power Sources 2010, 195, 8258.
    [25] T. D. Hatchard, J. R. Dahn, J. Electrochem. Soc. 2004, 151, A838.
    [26] T. Nishi, H. Nakai, A. Kita, J. Electrochem. Soc. 2013, 160, A1785.
    [27] R. Bhattacharyya, B. Key, H. L. Chen, A. S. Best, A. F. Hollenkamp, C. P. Grey, Nat. Mater. 2010, 9, 504.
    [28] A. I. Inozemtseva, V. A. Vizgalov, O. O. Kapitanova, G. Panin, J. J. V. Vélez, D. M. Itkis, D. Y. Usachov, L. V. Yashina, J. Electrochem. Soc. 2020, 167, 6, 110533.
    [29] Y. Horowitz, H. L. Han, F. A. Soto, W. T. Ralston, P. B. Balbuena, G. A. Somorjai, Nano Lett. 2018, 18, 1145.
    [30] H. N. Liu, I. H. Naqvi, F. J. Li, C. L. Liu, N. Shafiei, Y. L. Li, M. Pecht, J. Energy Storage 2020, 29, 11, 101342.
    [31] S. R. Chen, J. M. Zheng, D. H. Mei, K. S. Han, M. H. Engelhard, W. G. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 7, 1706102.
    [32] G. A. Giffin, J. Mater. Chem. A 2016, 4, 13378.
    [33] S. Q. Li, K. Wang, G. F. Zhang, S. N. Li, Y. A. Xu, X. D. Zhang, X. Zhang, S. H. Zheng, X. Z. Sun, Y. W. Ma, Adv. Funct. Mater. 2022, 32, 35, 2200796.
    [34] X. He, in Flexible, Printed and Thin Film Batteries 2019-2029, Vol. 2019, IDTechEx.
    [35] H. Z. Liu, G. H. Zhang, X. Zheng, F. J. Chen, H. G. Duan, Int. J. Extreme Manuf. 2020, 2, 28, 042001.
    [36] J. Lin, L. Lin, S. S. Qu, D. Y. Deng, Y. F. Wu, X. L. Yan, Q. S. Xie, L. S. Wang, D. L. Peng, Energy Environ. Mater. 2022, 5, 133.
    [37] L. X. Liu, Q. H. Weng, X. Y. Lu, X. L. Sun, L. Zhang, O. G. Schmidt, Small 2017, 13, 12, 1701847.
    [38] A. Patil, V. Patil, D. W. Shin, J. W. Choi, D. S. Paik, S. J. Yoon, Mater. Res. Bull. 2008, 43, 1913.
    [39] S. D. Jones, Akridge, Jr., Solid State Ion. 1992, 53, 628.
    [40] S. Oukassi, C. Giroud-Garampon, S. Poncet, R. Salot, J. Electrochem. Soc. 2017, 164, A1785.
    [41] S. Moitzheim, B. Put, P. M. Vereecken, Adv. Mater. Interfaces 2019, 6, 17, 1900805.
    [42] M. Nasreldin, R. Delattre, C. Calmes, M. Ramuz, V. A. Sugiawati, S. Maria, J. L. D. de la Tocnaye, T. Djenizian, Energy Storage Mater. 2020, 33, 108.
    [43] A. M. Gaikwad, B. V. Khau, G. Davies, B. Hertzberg, D. A. Steingart, A. C. Arias, Adv. Energy Mater. 2015, 5, 11, 1401389.
    [44] Q. Y. Xia, F. Zan, Q. Y. Zhang, W. Liu, Q. C. H. Li, Y. He, J. Y. Hua, J. H. Liu, J. Xu, J. S. Wang, C. Z. Wu, H. Xia, Adv. Mater. 2023, 35, 48.
    [45] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, J. Power Sources 1993, 43, 103.
    [46] B. Clement, M. Lyu, E. S. Kulkarni, T. E. Lin, Y. X. Hu, V. Lockett, C. Greig, L. Z. Wang, Engineering 2022, 13, 238.
    [47] G. Huebner, M. Krebs, in Materials, Manufacturing and Applications, 2015, 429.
    [48] M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 2021, 11, 37, 2101126.
    [49] J. Janek, W. G. Zeier, Nat. Energy 2016, 1, 4, 16141.
    [50] J. Pu, Z. H. Shen, C. L. Zhong, Q. W. Zhou, J. Y. Liu, J. Zhu, H. G. Zhang, Adv. Mater. 2020, 32, 28, 1903808.
    [51] Q. Y. Xia, M. Z. Ni, M. H. Chen, H. Xia, J. Mater. Chem. A 2019, 7, 6187.
    [52] H. Nara, T. Yokoshima, M. Otaki, T. Momma, T. Osaka, Electrochim. Acta 2013, 110, 403.
    [53] X. Qian, T. Hang, H. Nara, T. Yokoshima, M. Li, T. Osaka, J. Power Sources 2014, 272, 794.
    [54] Q. X. Shen, Q. Wang, Q. J. Guo, S. Y. Guan, B. Li, J. Electrochem. Soc. 2018, 165, D110.
    [55] R. Konar, G. D. Nessim, Mater. Adv. 2022, 3, 4471.
    [56] R. Konar, Rosy, I. Perelshtein, E. Teblum, M. Telkhozhayeva, M. Tkachev, J. J. Richter, E. Cattaruzza, A. P. Charmet, P. Stoppa, M. Noked, G. D. Nessim, ACS Omega 2020, 5, 19409.
    [57] J. Xie, J. F. M. Oudenhoven, D. J. Li, C. G. Chen, R. A. Eichel, P. H. L. Notten, J. Electrochem. Soc. 2016, 163, A2385.
    [58] C. Guan, J. Wang, Adv. Sci. 2016, 3, 23, 1500405.
    [59] X. R. Wang, G. Yushin, Energy Environ. Sci. 2015, 8, 1889.
    [60] J. Liu, M. N. Banis, Q. Sun, A. Lushington, R. Y. Li, T. K. Sham, X. L. Sun, Adv. Mater. 2014, 26, 6472.
    [61] X. H. Wang, C. Guan, L. M. Sun, R. A. Susantyoko, H. J. Fan, Q. Zhang, J. Mater. Chem. A 2015, 3, 15394.
    [62] Y. Gao, R. L. Patel, K. Y. Shen, X. F. Wang, R. L. Axelbaum, X. H. Liang, ACS Omega 2018, 3, 906.
    [63] H. D. Um, K. H. Choi, I. Hwang, S. H. Kim, K. Seo, S. Y. Lee, Energy Environ. Sci. 2017, 10, 931.
    [64] K. Sun, T. S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, J. A. Lewis, Adv. Mater. 2013, 25, 4539.
    [65] Z. Q. Wang, R. Winslow, D. Madan, P. K. Wright, J. W. Evans, M. Keif, X. Y. Rong, J. Power Sources 2014, 268, 246.
    [66] N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, P. M. Ajayan, Sci Rep 2012, 2, 5, 481.
    [67] G. V. Alexander, S. Patra, S. Valiyaveetil, S. Raj, M. K. Sugumar, M. M. U. Din, R. Murugan, J. Power Sources 2018, 396, 764.
    [68] Q. F. Yang, M. N. Cui, J. L. Hu, F. L. Chu, Y. J. Zheng, J. J. Liu, C. L. Li, ACS Nano 2020, 14, 1866.
    [69] R. M. Zhan, X. C. Wang, Z. H. Chen, Z. W. Seh, L. Wang, Y. M. Sun, Adv. Energy Mater. 2021, 11, 20, 2101565.
    [70] E. Adhitama, F. D. Brandao, I. Dienwiebel, M. M. Bela, A. Javed, L. Haneke, M. C. Stan, M. Winter, A. Gomez-Martin, T. Placke, Adv. Funct. Mater. 2022, 32, 13, 2201455.
    [71] E. Adhitama, M. M. Bela, F. Demelash, M. C. Stan, M. Winter, A. Gomez-Martin, T. Placke, Adv. Energy Mater. 2023, 13, 9.
    [72] M. Fenech, N. Sharma, Chem.-Asian J. 2020, 15, 1829.
    [73] Y. Matsuda, N. Kuwata, J. Kawamura, Solid State Ion. 2018, 320, 38.
    [74] C. M. Julien, A. Mauger, Coatings 2019, 9, 51, 386.
    [75] Y. T. Ma, L. Li, J. Qian, W. J. Qu, R. Luo, F. Wu, R. J. Chen, Energy Storage Mater. 2021, 39, 203.
    [76] F. X. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 2020, 49, 1569.
    [77] H. Lee, S. Kim, N. S. Parmar, J. H. Song, K. Y. Chung, K. B. Kim, J. W. Choi, J. Power Sources 2019, 434, 8, 226713.
    [78] Y. H. Liu, W. Zhang, Y. J. Zhu, Y. T. Luo, Y. H. Xu, A. Brown, J. N. Culver, C. A. Lundgren, K. Xu, Y. Wang, C. S. Wang, Nano Lett. 2013, 13, 293.
    [79] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 1997, 68, 604.
    [80] L. F. Wang, C. C. Ou, K. A. Striebel, J. J. S. Chen, J. Electrochem. Soc. 2003, 150, A905.
    [81] M. Hallot, A. Demortiere, P. Roussel, C. Lethien, Energy Storage Mater. 2018, 15, 396.
    [82] C. M. Julien, A. Mauger, O. M. Hussain, Materials 2019, 12, 26, 2687.
    [83] J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, S. A. Hackney, J. Electrochem. Soc. 2000, 147, 59.
    [84] C. L. Wang, X. Y. Dai, X. Guan, W. S. Jia, Y. Bai, J. Z. Li, Electrochim. Acta 2020, 354, 8, 136668.
    [85] L. L. Wang, B. B. Chen, J. Ma, G. L. Cui, L. Q. Chen, Chem. Soc. Rev. 2018, 47, 6505.
    [86] J. J. Ding, Q. A. Sun, Z. W. Fu, Electrochem. Solid State Lett. 2010, 13, A105.
    [87] Y. Q. Lai, M. Xu, Z. A. Zhang, C. H. Gao, P. Wang, Z. Y. Yu, J. Power Sources 2016, 309, 20.
    [88] G. Q. Tan, F. Wu, J. Lu, R. J. Chen, L. Li, K. Amine, Nanoscale 2014, 6, 10611.
    [89] V. P. Phan, B. Pecquenard, F. Le Cras, Adv. Funct. Mater. 2012, 22, 2580.
    [90] G. Q. Tan, W. Bao, Y. F. Yuan, Z. Liu, R. Shahbazian-Yassar, F. Wu, K. Amine, J. Wang, J. Lu, J. Mater. Chem. A 2017, 5, 5532.
    [91] B. Zhao, R. Ran, M. L. Liu, Z. P. Shao, Mater. Sci. Eng. R-Rep. 2015, 98, 1.
    [92] C. L. Wang, Y. C. Liao, F. C. Hsu, N. H. Tai, M. K. Wu, J. Electrochem. Soc. 2005, 152, A653.
    [93] Z. Z. Yu, H. R. Xu, G. S. Zhu, D. L. Yan, A. B. Yu, Appl. Surf. Sci. 2016, 368, 173.
    [94] C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
    [95] H. Schmidt, B. Jerliu, E. Hüger, J. Stahn, Electrochem. Commun. 2020, 115, 5, 106738.
    [96] J. P. Maranchi, A. F. Hepp, P. N. Kumta, Electrochem. Solid State Lett. 2003, 6, A198.
    [97] K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, J. W. Park, J. Power Sources 2004, 129, 270.
    [98] J. H. Miao, C. V. Thompson, J. Electrochem. Soc. 2018, 165, A650.
    [99] B. A. Nuhu, O. Bamisile, H. Adun, U. O. Abu, D. S. Cai, J. Alloy. Compd. 2023, 933, 9, 167737.
    [100] B. D. Polat, O. L. Eryilmaz, O. Keles, J. Alloy. Compd. 2016, 654, 363.
    [101] J. R. Szczech, S. Jin, Energy Environ. Sci. 2011, 4, 56.
    [102] W. Luo, X. Q. Chen, Y. Xia, M. Chen, L. J. Wang, Q. Q. Wang, W. Li, J. P. Yang, Adv. Energy Mater. 2017, 7, 28, 1701083.
    [103] L. Lin, Y. T. Ma, Q. S. Xie, L. S. Wang, Q. F. Zhang, D. L. Peng, ACS Nano 2017, 11, 6893.
    [104] K. Wei, L. H. Zhou, S. Wang, J. X. Wei, D. L. Yan, Y. Cheng, Z. Z. Yu, J. Alloy. Compd. 2021, 885, 7, 160994.
    [105] Q. L. Chen, H. F. Zheng, Y. F. Yang, Q. S. Xie, Y. T. Ma, L. S. Wang, D. L. Peng, ChemSusChem 2019, 12, 252.
    [106] L. Fan, S. Y. Wei, S. Y. Li, Q. Li, Y. Y. Lu, Adv. Energy Mater. 2018, 8, 31, 1702657.
    [107] N. Boaretto, I. Garbayo, S. Valiyaveettil-SobhanRaj, A. Quintela, C. M. Li, M. Casas-Cabanas, F. Aguesse, J. Power Sources 2021, 502, 34, 229919.
    [108] J. Sastre, A. Priebe, M. Dobeli, J. Michler, A. N. Tiwari, Y. E. Romanyuk, Adv. Mater. Interfaces 2020, 7, 11, 2000425.
    [109] A. J. Samson, K. Hofstetter, S. Bag, V. Thangadurai, Energy Environ. Sci. 2019, 12, 2957.
    [110] D. Rettenwander, Chem 2019, 5, 1695.
    [111] R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, J. L. M. Rupp, Nat. Energy 2019, 4, 475.
    [112] K. J. Kim, M. Balaish, M. Wadaguchi, L. P. Kong, J. L. M. Rupp, Adv. Energy Mater. 2021, 11, 63, 2002689.
    [113] Q. Zhao, S. Stalin, C. Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229.
    [114] A. M. Nolan, Y. Z. Zhu, X. F. He, Q. Bai, Y. F. Mo, Joule 2018, 2, 2016.
    [115] Y. Z. Zhu, X. F. He, Y. F. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.
    [116] Q. Y. Xia, S. Sun, J. Xu, F. Zan, J. L. Yue, Q. H. Zhang, L. Gu, H. Xia, Small 2018, 14, 11, 1804149.
    [117] V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 2014, 43, 4714.
    [118] R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem.-Int. Edit. 2007, 46, 7778.
    [119] J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
    [120] M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. T. Zhu, Z. D. Hood, J. L. M. Rupp, Nat. Energy 2021, 6, 227.
    [121] F. Chen, J. Y. Li, Z. F. Huang, Y. Yang, Q. Shen, L. M. Zhang, J. Phys. Chem. C 2018, 122, 1963.
    [122] M. A. Limpert, T. B. Atwater, T. Hamann, G. L. Godbey, G. T. Hitz, D. W. McOwen, E. D. Wachsman, Chem. Mat. 2022, 34, 9468.
    [123] Y. X. Guo, J. Cheng, Z. Zeng, Y. Y. Li, H. Q. Zhang, D. P. Li, L. J. Ci, ACS Appl. Energ. Mater. 2022, 5, 2853.
    [124] S. Abouali, C. H. Yim, A. Merati, Y. Abu-Lebdeh, V. Thangadurai, ACS Energy Lett. 2021, 6, 1920.
    [125] S. Lobe, C. Dellen, M. Finsterbusch, H. G. Gehrke, D. Sebold, C. L. Tsai, S. Uhlenbruck, O. Guillon, J. Power Sources 2016, 307, 684.
    [126] M. Saccoccio, J. Yu, Z. H. Lu, S. C. T. Kwok, J. Wang, K. K. Yeung, M. M. F. Yuen, F. Ciucci, J. Power Sources 2017, 365, 43.
    [127] a)M. Rawlence, A. N. Filippin, A. Wackerlin, T. Y. Lin, E. Cuervo-Reyes, A. Remhof, C. Battaglia, J. L. M. Rupp, S. Buecheler, ACS Appl. Mater. Interfaces 2018, 10, 13720; b)J. Sastre, T. Y. Lin, A. N. Filippin, A. Priebe, E. Ayancini, J. Michler, A. N. Tiwari, Y. E. Rornanyuk, S. Buecheler, ACS Appl. Energ. Mater. 2019, 2, 8511.
    [128] Y. L. Zhu, S. Wu, Y. L. Pan, X. K. Zhang, Z. K. Yan, Y. Xiang, Nanoscale Res. Lett. 2020, 15, 8, 153.
    [129] H. Lee, S. Yang, S. Kim, J. Song, J. Park, C. H. Doh, Y. C. Ha, T. S. Kwon, Y. M. Lee, Curr. Opin. Electrochem. 2022, 34, 10, 100986.
    [130] E. Deiss, Electrochim. Acta 2002, 47, 4027, Pii s0013-4686(02)00363-8.
    [131] P. Vadhva, J. Hu, M. J. Johnson, R. Stocker, M. Braglia, D. J. L. Brett, A. J. E. Rettie, ChemElectroChem 2021, 8, 1930.
    [132] W. Choi, H. C. Shin, J. M. Kim, J. Y. Choi, W. S. Yoon, J. Electrochem. Sci. Technol. 2020, 11, 13.
    [133] S. Larfaillou, D. Guy-Bouyssou, F. le Cras, S. Franger, J. Power Sources 2016, 319, 139.
    [134] F. Paloukis, C. Elmasides, F. Farmakis, P. Selinis, S. G. Neophytides, N. Georgoulas, J. Power Sources 2016, 331, 285.
    [135] T. Krauskopf, H. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2019, 11, 14463.
    [136] W. B. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schroder, R. Koerver, T. Leichtweiss, P. Hartmann, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2017, 9, 17835.
    [137] M. Oldenburger, B. Bedürftig, A. Gruhle, F. Grimsmann, E. Richter, R. Findeisen, A. Hintennach, J. Energy Storage 2019, 21, 272.
    [138] D. Y. Youn, C. Kim, J. Y. Cheong, S. H. Cho, K. R. Yoon, J. W. Jung, N. H. Kim, I. D. Kim, ACS Appl. Energ. Mater. 2020, 3, 208.
    [139] T. Paixao, ChemElectroChem 2020, 7, 3414.
    [140] W. W. Zeng, L. Wang, X. Peng, T. F. Liu, Y. Y. Jiang, F. Qin, L. Hu, P. K. Chu, K. F. Huo, Y. H. Zhou, Adv. Energy Mater. 2018, 8, 8, 1702314.
    [141] S. F. Lou, X. Q. Cheng, Y. Zhao, A. Lushington, J. L. Gao, Q. Li, P. J. Zuo, B. Q. Wang, Y. Z. Gao, Y. L. Ma, C. Y. Du, G. P. Yin, X. L. Sun, Nano Energy 2017, 34, 15.
    [142] C. Yang, J. R. Feng, F. Lv, J. H. Zhou, C. F. Lin, K. Wang, Y. L. Zhang, Y. Yang, W. Wang, J. B. Li, S. J. Guo, Adv. Mater. 2018, 30, 8, 1800036.
    [143] M. Kim, S. K. Kang, J. Choi, H. Ahn, J. Ji, S. H. Lee, W. B. Kim, Nano Lett. 2022, 22, 10232.
    [144] G. Wang, J. Zhang, S. Yang, F. X. Wang, X. D. Zhuang, K. Mullen, X. L. Feng, Adv. Energy Mater. 2018, 8, 8, 1702254.
    [145] A. Burnham, E. J. Dufek, T. Stephens, J. Francfort, C. Michelbacher, R. B. Carlson, J. C. Zhang, R. Vijayagopal, F. Dias, M. Mohanpurkar, D. Scoffield, K. Hardy, M. Shirk, R. Hovsapian, S. Ahmed, I. Bloom, A. N. Jansen, M. Keyser, C. Kreuzer, A. Markel, A. Meintz, A. Pesaran, T. R. Tanim, J. Power Sources 2017, 367, 237.
    [146] N. Nitta, F. X. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.
    [147] C. Zhang, Q. L. Hu, Y. R. Shen, W. Liu, Adv. Energy Sustain. Res. 2022, 3, 18, 2100203.
    [148] H. J. Noh, S. Youn, C. S. Yoon, Y. K. Sun, J. Power Sources 2013, 233, 121.
    [149] J. C. Zhang, Z. D. Liu, C. H. Zeng, J. W. Luo, Y. D. Deng, X. Y. Cui, Y. N. Chen, Rare Metals 2022, 41, 3946.
    [150] M. Menetrier, I. Saadoune, S. Levasseur, C. Delmas, J. Mater. Chem. 1999, 9, 1135.
    [151] Y. Y. Jiang, C. D. Qin, P. F. Yan, M. L. Sui, J. Mater. Chem. A 2019, 7, 20824.
    [152] A. N. Jansen, A. J. Kahaian, K. D. Kepler, P. A. Nelson, K. Amine, D. W. Dees, D. R. Vissers, M. M. Thackeray, J. Power Sources 1999, 81, 902.
    [153] G. G. Amatucci, J. M. Tarascon, L. C. Klein, Solid State Ion. 1996, 83, 167.
    [154] Q. Yang, J. Huang, Y. J. Li, Y. Wang, J. L. Qiu, J. N. Zhang, H. G. Yu, X. Q. Yu, H. Li, L. Q. Chen, J. Power Sources 2018, 388, 65.
    [155] Y. C. Lyu, X. Wu, K. Wang, Z. J. Feng, T. Cheng, Y. Liu, M. Wang, R. M. Chen, L. M. Xu, J. J. Zhou, Y. H. Lu, B. K. Guo, Adv. Energy Mater. 2021, 11, 29, 2000982.
    [156] C. Y. Wang, J. Z. Weng, S. R. Wu, X. Zhang, Q. S. Tong, M. Q. Zhu, Mat. Chem. Front. 2022, 6, 2319.
    [157] J. X. Zhang, P. F. Wang, P. X. Bai, H. L. Wan, S. F. Liu, S. Hou, X. J. Pu, J. L. Xia, W. R. Zhang, Z. Y. Wang, B. Nan, X. Y. Zhang, J. J. Xu, C. S. Wang, Adv. Mater. 2022, 34, 12, 2108353.
    [158] F. Wang, Y. X. Lin, L. M. Suo, X. L. Fan, T. Gao, C. Y. Yang, F. D. Han, Y. Qi, K. Xu, C. S. Wang, Energy Environ. Sci. 2016, 9, 3666.
    [159] B. Li, Y. Q. Wang, H. B. Lin, J. S. Liu, L. D. Xing, M. Q. Xu, W. S. Li, Electrochim. Acta 2014, 141, 263.
    [160] A. J. Zhou, X. Y. Dai, Y. T. Lu, Q. J. Wang, M. S. Fu, J. Z. Li, ACS Appl. Mater. Interfaces 2016, 8, 34123.
    [161] A. J. Zhou, J. Xu, X. Y. Dai, B. Yang, Y. T. Lu, L. P. Wang, C. Fan, J. Z. Li, J. Power Sources 2016, 322, 10.
    [162] N. Yabuuchi, Y. Kinoshita, K. Misaki, T. Matsuyama, S. Komaba, J. Electrochem. Soc. 2015, 162, A538.
    [163] Y. K. Sun, J. M. Han, S. T. Myung, S. W. Lee, K. Amine, Electrochem. Commun. 2006, 8, 821.
    [164] Z. H. Chen, Y. Qin, K. Amine, Y. K. Sun, J. Mater. Chem. 2010, 20, 7606.
    [165] J. N. Zhang, Q. H. Li, C. Y. Ouyang, X. Q. Yu, M. Y. Ge, X. J. Huang, E. Y. Hu, C. Ma, S. F. Li, R. J. Xiao, W. L. Yang, Y. Chu, Y. J. Liu, H. G. Yu, X. Q. Yang, X. J. Huang, L. Q. Chen, H. Li, Nat. Energy 2019, 4, 594.
    [166] T. Tian, T. W. Zhang, Y. C. Yin, Y. H. Tan, Y. H. Song, L. L. Lu, H. B. Yao, Nano Lett. 2020, 20, 677.
    [167] J. Z. Hu, J. Luo, Z. H. Xu, K. Y. Xie, H. R. Yu, H. M. Wang, C. Shen, L. H. Qi, B. Q. Wei, Appl. Phys. Rev. 2021, 8, 8, 011401.
    [168] T. Kwon, T. Ohnishi, K. Mitsuishi, T. C. Ozawa, K. Takada, J. Power Sources 2015, 274, 417.
    [169] T. Azib, F. Le Cras, H. Porthault, Electrochim. Acta 2015, 160, 145.
    [170] H. Katsui, T. Goto, Surf. Coat. Technol. 2013, 218, 57.
    [171] H. Xia, L. Lu, G. Ceder, J. Power Sources 2006, 159, 1422.
    [172] M. E. Donders, W. M. Arnoldbik, H. C. M. Knoops, W. M. M. Kessels, P. H. L. Notten, J. Electrochem. Soc. 2013, 160, A3066.
    [173] H. Y. Park, S. R. Lee, Y. J. Lee, B. W. Cho, W. I. Cho, Mater. Chem. Phys. 2005, 93, 70.
    [174] X. J. Zhu, Z. P. Guo, G. D. Du, P. Zhang, H. K. Liu, Surf. Coat. Technol. 2010, 204, 1710.
    [175] J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, S. A. Hackney, J. Electrochem. Soc. 2000, 147, 59.
    [176] F. Y. Wang, H. T. Zhao, J. Liang, T. S. Li, Y. S. Luo, S. Y. Lu, X. F. Shi, B. Z. Zheng, J. Du, X. P. Sun, J. Mater. Chem. A 2020, 8, 20260.
    [177] G. Cherkashinin, D. Ensling, W. Jaegermann, J. Mater. Chem. A 2014, 2, 3571.
    [178] K. Ariga, Y. Yamauchi, G. Rydzek, Q. M. Ji, Y. Yonamine, K. C. W. Wu, J. P. Hill, Chem. Lett. 2014, 43, 36.
    [179] K. S. Ganesh, B. P. Reddy, P. J. Kumar, O. M. Hussain, J. Electroanal. Chem. 2018, 828, 71.
    [180] K. S. Ganesh, B. P. Reddy, P. J. Kumar, K. Jayanthbabu, P. Rosaiah, O. M. Hussain, J. Solid State Electrochem. 2015, 19, 3621.
    [181] B. Xiao, Q. C. Tang, X. Y. Dai, F. Z. Wu, H. J. Chen, J. Z. Li, Y. Mai, Y. J. Gu, ACS Omega 2022, 7, 31597.
    [182] R. Z. Yin, Y. S. Kim, S. J. Shin, I. Jung, J. S. Kim, S. K. Jeong, J. Electrochem. Soc. 2012, 159, A253.
    [183] S. X. Chen, C. W. Wang, Y. Zhou, J. K. Liu, C. G. Shi, G. Z. Wei, B. Y. Yin, H. T. Deng, S. Y. Pan, M. J. Guo, W. C. Zheng, H. Z. Wang, Y. H. Jiang, L. Huang, H. G. Liao, J. T. Li, S. G. Sun, J. Mater. Chem. A 2022, 10, 5295.
    [184] Y. Y. Huang, Y. C. Zhu, H. Y. Fu, M. Y. Ou, C. C. Hu, S. J. Yu, Z. W. Hu, C. T. Chen, G. Jiang, H. K. Gu, H. Lin, W. Luo, Y. H. Huang, Angew. Chem.-Int. Edit. 2021, 60, 4682.
    [185] Y. X. Chen, T. Y. Liu, S. Brahma, J. L. Huang, C. P. Liu, Mater. Today Energy 2024, 40, 12, 101486.
    [186] J. Liang, D. H. Wu, M. Hu, Y. Tian, J. P. Wei, Z. Zhou, Electrochim. Acta 2014, 146, 784.
    [187] J. Trask, A. Anapolsky, B. Cardozo, E. Januar, K. Kumar, M. Miller, R. Brown, R. Bhardwaj, J. Power Sources 2017, 350, 56.
    [188] K. Hara, T. A. Yano, K. Suzuki, M. Hirayama, T. Hayashi, R. Kanno, M. Hara, Anal. Sci. 2017, 33, 853.
    [189] L. Le Van-Jodin, D. Rouchon, V. H. Le, I. Chevalier, J. Brun, C. Secouard, J. Raman Spectrosc. 2019, 50, 1594.
    [190] B. Put, P. M. Vereecken, M. J. Mees, F. Rosciano, I. P. Radu, A. Stesmans, Phys. Chem. Chem. Phys. 2015, 17, 29045.
    [191] C. F. Liu, Z. G. Neale, G. Z. Cao, Mater. Today 2016, 19, 109.
    [192] K. Lahtinen, E. L. Rautama, H. Jiang, S. Rasanen, T. Kallio, ChemSusChem 2021, 14, 2434.
    [193] A. J. Zhou, Y. T. Lu, Q. J. Wang, J. Xu, W. H. Wang, X. Y. Dai, J. Z. Li, J. Power Sources 2017, 346, 24.
    [194] Y. X. Chen, H. C. Liao, Y. W. Cheng, J. H. Huang, C. P. Liu, ACS Appl. Mater. Interfaces, 12.
    [195] N. A. Canas, K. Hirose, B. Pascucci, N. Wagner, K. A. Friedrich, R. Hiesgen, Electrochim. Acta 2013, 97, 42.
    [196] A. Bekzhanov, B. Uzakbaiuly, A. Mukanova, Z. Bakenov, Nanomaterials 2022, 12, 15, 2188.
    [197] Z. F. Zhuang, J. X. Wang, K. Jia, G. J. Ji, J. Ma, Z. Y. Han, Z. H. Piao, R. H. Gao, H. C. Ji, X. W. Zhong, G. M. Zhou, H. M. Cheng, Adv. Mater. 2023, 35, 14.
    [198] Q. S. Wang, B. B. Mao, S. I. Stoliarov, J. H. Sun, Prog. Energy Combust. Sci. 2019, 73, 95.
    [199] Y. W. Cheng, C. K. Lin, Y. C. Chu, A. Abouimrane, Z. H. Chen, Y. Ren, C. P. Liu, Y. H. Tzeng, O. Auciello, Adv. Mater. 2014, 26, 3724.
    [200] P. Li, G. Q. Zhao, X. B. Zheng, X. Xu, C. H. Yao, W. P. Sun, S. X. Dou, Energy Storage Mater. 2018, 15, 422.
    [201] J. Pan, Q. L. Zhang, J. C. Li, M. J. Beck, X. C. Xiao, Y. T. Cheng, Nano Energy 2015, 13, 192.
    [202] K. Guo, R. Kumar, X. C. Xiao, B. W. Sheldon, H. J. Gao, Nano Energy 2020, 68, 13, 104257.
    [203] T. Waldmann, B. I. Hogg, M. Kasper, S. Grolleau, C. G. Couceiro, K. Trad, B. P. Matadi, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 2016, 163, A1232.
    [204] S. Suh, H. Choi, K. Eom, H. J. Kim, J. Alloy. Compd. 2020, 827, 7, 154102.
    [205] X. H. Shen, Z. Y. Tian, R. J. Fan, L. Shao, D. P. Zhang, G. L. Cao, L. Kou, Y. Z. Bai, J. Energy Chem. 2018, 27, 1067.
    [206] M. S. Kang, I. Heo, S. Kim, J. Yang, J. Kim, S. J. Min, J. Chae, W. C. Yoo, Energy Storage Mater. 2022, 50, 234.
    [207] M. Ashuri, Q. R. He, L. L. Shaw, Nanoscale 2016, 8, 74.
    [208] P. Nie, X. Y. Liu, R. R. Fu, Y. T. Wu, J. M. Jiang, H. Dou, X. G. Zhang, ACS Energy Lett. 2017, 2, 1279.
    [209] Y. W. Cheng, R. K. Pandey, Y. C. Li, C. H. Chen, B. L. Peng, J. H. Huang, Y. X. Chen, C. P. Liu, Nano Energy 2020, 74, 10, 104811.
    [210] Q. Xu, J. Y. Li, J. K. Sun, Y. X. Yin, L. J. Wan, Y. G. Guo, Adv. Energy Mater. 2017, 7, 6, 1601481.
    [211] X. L. Li, J. H. Cho, N. Li, Y. Y. Zhang, D. Williams, S. A. Dayeh, S. T. Picraux, Adv. Energy Mater. 2012, 2, 87.
    [212] Y. W. Cheng, C. H. Chen, S. A. Wang, Y. C. Li, B. L. Peng, J. H. Huang, C. P. Liu, Nano Energy 2022, 102, 11, 107688.
    [213] P. F. Cao, G. Yang, B. R. Li, Y. M. Zhang, S. Zhao, S. Zhang, A. Erwin, Z. C. Zhang, A. P. Sokolov, J. Nanda, T. Saito, ACS Energy Lett. 2019, 4, 1171.
    [214] Z. H. Li, Y. P. Zhang, T. F. Liu, X. H. Gao, S. Y. Li, M. Ling, C. D. Liang, J. C. Zheng, Z. Lin, Adv. Energy Mater. 2020, 10, 11, 1903110.
    [215] N. M. Johnson, Z. Z. Yang, M. Kim, D. J. Yoo, Q. Liu, Z. C. Zhang, ACS Energy Lett. 2022, 7, 897.
    [216] E. Markevich, G. Salitra, D. Aurbach, ACS Energy Lett. 2017, 2, 1337.
    [217] a)H. Xia, S. B. Tang, L. Lu, Mater. Res. Bull. 2007, 42, 1301; b)H. J. Jung, M. Park, S. H. Han, H. Lim, S. K. Joo, Solid State Commun. 2003, 125, 387, Pii s0038-1098(02)00849-9.
    [218] L. Tong, P. Wang, A. R. Chen, F. Qiu, W. Z. Fang, J. Yang, C. Wang, Y. Yang, Carbon 2019, 153, 592.
    [219] Y. X. Chen, H. C. Liao, Y. W. Cheng, J. H. Huang, C. P. Liu, ACS Appl. Mater. Interfaces 2023, 15, 18845.
    [220] J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Mater. Chem. Phys. 2010, 120, 421.
    [221] S. S. Yin, Q. Ji, X. X. Zuo, S. Xie, K. Fang, Y. G. Xia, J. L. Li, B. Qiu, M. M. Wang, J. Z. Ban, X. Y. Wang, Y. Zhang, Y. Xiao, L. Y. Zheng, S. Z. Liang, Z. P. Liu, C. D. Wang, Y. J. Cheng, J. Mater. Sci. Technol. 2018, 34, 1902.
    [222] A. Roy, T. K. Chini, B. Satpati, Appl. Surf. Sci. 2020, 501, 12, 144225.
    [223] X. Su, Q. L. Wu, J. C. Li, X. C. Xiao, A. Lott, W. Q. Lu, B. W. Sheldon, J. Wu, Adv. Energy Mater. 2014, 4, 23, 1300882.
    [224] G. B. Cho, S. H. Park, S. H. Park, J. H. Ju, K. K. Cho, H. J. Ahn, K. W. Kim, J. Alloy. Compd. 2019, 809, 8, 151810.
    [225] H. Yang, S. Huang, X. Huang, F. F. Fan, W. T. Liang, X. H. Liu, L. Q. Chen, J. Y. Huang, J. Li, T. Zhu, S. L. Zhang, Nano Lett. 2012, 12, 1953.
    [226] V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, D. Aurbach, Electrochem. Commun. 2007, 9, 796.
    [227] X. Liu, H. G. Jung, S. O. Kim, H. S. Choi, S. Lee, J. H. Moon, J. K. Lee, Sci Rep 2013, 3, 7, 3183.
    [228] P. Wang, L. Tong, R. F. Wang, A. R. Chen, W. Z. Fang, K. Yue, T. Sun, Y. Yang, RSC Adv. 2018, 8, 41404.
    [229] Y.-W. Cheng, C.-H. Chen, S.-A. Wang, Y.-C. Li, B.-L. Peng, J.-H. Huang, C.-P. Liu, Nano Energy 2022, 107688.
    [230] B. Jerliu, E. Huger, L. Dorrer, B. K. Seidlhofer, R. Steitz, M. Horisberger, H. Schmidt, Phys. Chem. Chem. Phys. 2018, 20, 23480.
    [231] P. R. Abel, Y. M. Lin, H. Celio, A. Heller, C. B. Mullins, ACS Nano 2012, 6, 2506.
    [232] A. R. Jimenez, R. Klopsch, R. Wagner, U. C. Rodehorst, M. Kolek, R. Nolle, M. Winter, T. Placke, ACS Nano 2017, 11, 4731.
    [233] Y. Zhao, J. Wang, Q. He, J. Shi, Z. Y. Zhang, X. H. Men, D. Yan, H. Z. Wang, ACS Nano 2019, 13, 5602.
    [234] L. Tong, P. Wang, W. Z. Fang, X. J. Guo, W. Z. Bao, Y. Yang, S. L. Shen, F. Qiu, ACS Appl. Mater. Interfaces 2020, 12, 29242.
    [235] H. X. Li, H. M. Bai, Z. L. Tao, J. Chen, J. Power Sources 2012, 217, 102.
    [236] F. S. Xi, Z. Zhang, Y. X. Hu, S. Y. Li, W. H. Ma, X. H. Chen, X. H. Wan, C. Chong, B. Luo, L. Z. Wang, J. Hazard. Mater. 2021, 414, 11, 125480.
    [237] H. S. Bae, I. Phiri, H. S. Kang, Y. M. Lee, M. H. Ryou, J. Power Sources 2021, 514, 8, 230553.
    [238] C. Karuppiah, S. L. Beshahwured, Y. S. Wu, L. M. Babulal, K. Z. Walle, H. K. Tran, S. H. Wu, R. Jose, C. C. Yang, ACS Appl. Energ. Mater. 2021, 4, 11248.
    [239] B. Bang, M. H. Kim, H. S. Moon, Y. K. Lee, J. W. Park, J. Power Sources 2006, 156, 604.
    [240] H. K. Deng, G. Chu, F. Luo, H. Li, L. Q. Chen, K. E. Aifantis, J. Power Sources 2016, 329, 372.
    [241] M. H. Ryou, S. H. Kim, S. W. Kim, S. Y. Lee, Energy Environ. Sci. 2022, 15, 2581.
    [242] G. B. Cho, J. K. Kim, S. H. Lee, G. T. Kim, J. P. Noh, K. K. Cho, K. W. Kim, T. H. Nam, H. J. Ahn, Electrochim. Acta 2017, 224, 649.
    [243] S. Choi, T. H. Kim, J. I. Lee, J. Kim, H. K. Song, S. Park, ChemSusChem 2014, 7, 3483.
    [244] H. Cha, Y. Lee, J. Kim, M. Park, J. Cho, Adv. Energy Mater. 2018, 8, 9, 1801917.
    [245] T. P. Plateau, H. Pham, Y. Q. Zhu, M. Leu, J. Park, Adv. Energy Mater. 2022, 12, 16, 2201353.
    [246] C. J. Yu, X. Li, T. Ma, J. P. Rong, R. J. Zhang, J. Shaffer, Y. H. An, Q. Liu, B. Q. Wei, H. Q. Jiang, Adv. Energy Mater. 2012, 2, 68.
    [247] K. A. Hays, R. E. Ruther, A. J. Kukay, P. F. Cao, T. Saito, D. L. Wood, J. L. Li, J. Power Sources 2018, 384, 136.
    [248] X. Wan, C. Kang, T. S. Mu, J. M. Zhu, P. J. Zuo, C. Y. Du, G. P. Yin, ACS Energy Lett. 2022, 7, 3572.
    [249] Y. Hwa, E. J. Cairns, Electrochim. Acta 2018, 271, 103.
    [250] T. Yim, S. J. Choi, Y. N. Jo, T. H. Kim, K. J. Kim, G. Jeong, Y. J. Kim, Electrochim. Acta 2014, 136, 112.
    [251] Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park, T. W. Kwon, J. Lee, K. Char, A. Coskun, J. W. Choi, Adv. Mater. 2019, 31, 9, 1905048.
    [252] Y. J. Yang, S. X. Wu, Y. P. Zhang, C. B. Liu, X. J. Wei, D. Luo, Z. Lin, Chem. Eng. J. 2021, 406, 13, 126807.
    [253] Y. Zhao, Z. Liang, Y. Q. Kang, Y. A. Zhou, Y. X. Li, X. M. He, L. Wang, W. C. Mai, X. S. Wang, G. M. Zhou, J. X. Wang, J. G. Li, N. Tavajohi, B. H. Li, Energy Storage Mater. 2021, 35, 353.
    [254] A. Y. Su, Q. Pang, X. Chen, J. J. Dong, Y. Y. Zhao, R. Q. Lian, D. Zhang, B. B. Liu, G. Chen, Y. J. Wei, J. Mater. Chem. A 2018, 6, 23357.
    [255] N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C. J. Li, L. J. Wan, R. Wen, Y. G. Guo, Angew. Chem.-Int. Edit. 2018, 57, 1505.
    [256] Y. X. Chen, Y. W. Cheng, J. H. Huang, C. P. Liu, J. Mater. Chem. A 2023, 11, 21211.
    [257] X. Xiao, P. Liu, M. W. Verbrugge, H. Haftbaradaran, H. Gao, J. Power Sources 2011, 196, 1409.
    [258] S. K. Soni, B. W. Sheldon, X. C. Xiao, M. W. Verbrugge, D. Ahn, H. Haftbaradaran, H. J. Gao, J. Electrochem. Soc. 2012, 159, A38.
    [259] H. B. Chew, B. Y. Hou, X. J. Wang, S. M. Xia, Int. J. Solids Struct. 2014, 51, 4176.
    [260] Y. He, X. Q. Yu, Y. H. Wang, H. Li, X. J. Huang, Adv. Mater. 2011, 23, 4938.
    [261] S. K. Soni, B. W. Sheldon, X. C. Xiao, A. Tokranov, Scr. Mater. 2011, 64, 307.
    [262] R. M. Gnanamuthu, C. W. Lee, Mater. Chem. Phys. 2011, 130, 831.
    [263] T. M. Higgins, S. H. Park, P. J. King, C. Zhang, N. MoEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, J. N. Coleman, ACS Nano 2016, 10, 3702.
    [264] L. M. Jin, C. Shen, Q. Wu, A. Shellikeri, J. S. Zheng, C. M. Zhang, J. P. Zheng, Adv. Sci. 2021, 8, 21, 2005031.
    [265] Y. F. Shen, J. M. Zhang, Y. F. Pu, H. Wang, B. Wang, J. F. Qian, Y. L. Cao, F. P. Zhong, X. P. Ai, H. X. Yang, ACS Energy Lett. 2019, 4, 1717.
    [266] S. J. Kim, S. H. Moon, M. C. Kim, J. Y. So, S. B. Han, D. H. Kwak, W. G. Bae, K. W. Park, J. Appl. Electrochem. 2018, 48, 1057.
    [267] J. Schlaier, S. Cangaz, S. Maletti, C. Heubner, T. Abendroth, M. Schneider, S. Kaskel, A. Michaelis, Adv. Mater. Interfaces 2022, 9, 12, 2200507.
    [268] Y. Son, S. Sim, H. Ma, M. Choi, Y. Son, N. Park, J. Cho, M. Park, Adv. Mater. 2018, 30, 8, 1705430.
    [269] M. Wang, X. R. Xiao, X. S. Huang, J. Power Sources 2016, 307, 77.
    [270] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, K. Konno, J. Phys. Chem. C 2011, 115, 13487.

    無法下載圖示 校內:2030-02-10公開
    校外:2030-02-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE