簡易檢索 / 詳目顯示

研究生: 陳怡頻
Chen, Yi-Pin
論文名稱: 具快速與高整合度之FPGA Shack-Hartmann波前感測器於適應性光學系統
Rapid and Highly Integrated FPGA-based Shack-Hartmann Wavefront Sensor for Adaptive Optics System
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 42
中文關鍵詞: Shack-Hartmann波前感測器適應性光學系統現場可程式化閘陣列Camera Link介面
外文關鍵詞: Shack-Hartmann wavefront sensor, adaptive optics system, FPGA, Camera Link interface
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 波前感測器(wavefront sensor)在適應性光學系統(adaptive optics system,AOS)中是不可或缺的,作為偵測波前相位並回饋給AOS作為回授依據。此論文主要開發高速且容易整合至AOS的Shack-Hartmann波前感測器(Shack-Hartmann wavefront sensor,SHWS),並以前14項Zernike多項式係數輸出資料表示擬合整體的波前。依使用的微透鏡陣列和相機,規格上,使用26 × 26個微透鏡陣列,波前可量測動態範圍± 8.06 mrad,最大可量測的波前變化量±31.45 μm。在速度方面,影像傳輸的速度和波前重建的計算時間皆會影響感測器的偵測速度,為了追求速度上的極限,選擇Camera Link影像傳輸介面的相機、Camera Link介面影像擷取卡嵌入式現場可程式邏輯閘陣列(field-programmable gate array,FPGA)做即時平行運算,迴圈可精準至每秒260幀率以上(frames per second,fps),並在同一信號處理卡上的可編程輯閘陣列元件(field programmable gate array,FPGA)模組來直接控制可調變聚焦鏡(deformable mirror,DM),調控通道電壓以及相對應的輸出,並收集多通道的驅動電壓輸入以及相對應的多通道Zernike係數輸出作多通道輸入及多通道輸出(multichannel input multichannel output,MIMO)的系統識別。儲存的輸入輸出資料在MATLAB上做離線分析,藉由數值次狀態空間系統鑑別方法(numerical subspace state space system identification)來得到以100 Hz迴圈之開迴路控制系統速度的系統狀態模型,目前在1輸入2輸出的系統所鑑別出的吻合度約84%,32輸入8輸出鑑別出的系統吻合度約70 ~ 80%。

    In this thesis, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. A Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel algorithm and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. This FPGA-bead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate. For the further use of AOS, the system identification with the control loop of 100 Hz can be implemented. The fitting result in 1-input/2-output is 84 % and in 32-input/8-output is around 70 ~ 80 %.

    摘要 I Extended Abstract III 致謝 XIII 目錄 XIV 圖目錄 XVI 表目錄 XVIII 第一章 序論 1 1-1前言 1 1-2研究動機和目的 2 1-3論文架構 3 第二章 Shack-Hartmann波前感測 4 2-1 SHWS的基本原理 4 2-2 SHWS主要元件 9 2-2-1 感測器 9 2-2-2 微透鏡陣列(microlens array) 10 2-3 自製SHWS規格 11 2-4 Camera Link相機擷取影像機制 16 2-5 基於FPGA之快速波前感測器架構 18 2-6 微型波前感測器開發 20 第三章 適應性光學系統 21 3-1波前感測器 21 3-2波前修正 22 3-2-1可調變聚焦鏡 23 3-2-2 DM驅動器 24 3-3系統控制 28 第四章 AOS系統鑑別 31 4-1多通道系統鑑別 31 4-2系統鑑別結果 33 第五章 結論與未來展望 38 參考文獻 40

    [1] R. K. Tyson, Principles of Adaptive Optics, 2nd ed., Academic (1998).
    [2] H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
    [3] M. C. Roggemann and B. Welsh, Image Through Turbulence, CRC Press (1996).
    [4] F. G. Smith ed., Atmospheric Propagation of Radiation, SPIE (1993).
    [5] H. B. Rosenstock, J. H. Hancock, “Light propagation through a moving gas,” Appl. Opt. 10(6), 1299-1307 (1971).
    [6] F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15(6), 1479-1493 (1976).
    [7] R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” Appl. Opt. 35(19), 3640-3646 (1996).
    [8] E. J. Fernndez, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26(10), 746-748 (2001).
    [9] B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573-S577 (2001).
    [10] J. M. Geary, Introduction to Wavefront Sensors (SPIE Press, 1995).
    [11] W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998-1006 (1980).
    [12] D. L. Fried, “Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370-375 (1977).
    [13] R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375-378 (1977).
    [14] G.-M. Dai, “Model wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. 13, 1218-1225 (1996).
    [15] S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023-1207 (2009).
    [16] M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press (1970).
    [17] http://www.volkerschatz.com/hardware/clink.html
    [18] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 7th ed., Wiley (2007).
    [19] F. Roddier, C. Roddier, and N. Roddier, “Curvature sensing: a new wavefront sensing method,” SPIE Proc. 976, 203-209 (1988).
    [20] X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685-16701 (2010).
    [21] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168-76 (1999).
    [22] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave‐front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019-6026 (1999).
    [23] M. Booth, T. Wilson, H.-B. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131-5139 (2005).
    [24] http://www.ni.com/zh-tw/support/model.pcie-1473.html
    [25] http://www.ni.com/pdf/manuals/374200a.pdf
    [26] E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003).
    [27] J. B. Stewart, A. Diouf, Y. Zhou, and T. Bifano, “Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control,” J. Opt. Soc. Am. A 24, 3827-3833 (2007).
    [28] B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467-4474 (2009).
    [29] L. Ljung, System Identification Toolbox for Use with MATLAB (Mathworks, 2001).
    [30] P. V. Overschee and B. D. Moor, “N4SID: subspace algorithms for the identification of combined deterministic and stochastic systems,” Automatica 30, 75-93 (1994).

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE