簡易檢索 / 詳目顯示

研究生: 陳威宇
Chen, Wei-Yu
論文名稱: 利用深度神經網絡重建剪切旋轉磁化電漿密度分佈的動態圖像
Dynamic image reconstruction of density profile of sheared-rotating magnetized plasma with deep neural network
指導教授: 河森榮一郎
Eiichiro Kawamori
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 59
中文關鍵詞: 深度神經網絡漂移波線性磁化電漿微波干涉儀
外文關鍵詞: deep neural network, drift wave, linear magnetized plasma, microwave interferometer
相關次數: 點閱:119下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從線積分信號中重建電漿參數(包括密度、溫度等)的空間分佈的傳統方法是假定電漿為宏觀靜態的狀態。 然而,在大多數情況下,電漿(尤其是在核聚變電漿實驗中)在空間和時間上是動態演化的。 因此,我們嘗試使用深度神經網絡 (DNN) 從干涉儀測量的線積分密度 n_e L(x,t) 中建立電漿密度截面輪廓在時空演化的新重建方法,其中 x 和 t 分別表示探測波路徑的位置和時間。這個想法是將重建過程視為圖像重建,這是 DNN 的專業領域。 也就是說,將線積分密度 n_e L(x,t) (等效於功率頻譜 (n_e L) ̃(x,f) 和相位頻譜 ϕ(x,f))的時空演化作為輸入圖像到 DNN,相應的輸出是橫截面密度分佈的動態圖像。作為第一步,我們使用由干涉儀測量的數值模擬產生的數據集開發和訓練 DNN,以製備剪切旋轉等離子體的各種剖面,其密度剖面表示如下:n_e (r,t)=∑_r〖∑_m〖Amp(r,m)cos⁡(mθ-ω(r,m)〗 t+θ_0 〗) ,其中 r,Amp(r,m), m, θ, ω(r,m), …分別是徑向位置、幅度、極向模數、極向角、角頻率……。 m 範圍為 0 到 4。
    在數值模擬中準備了以下三個數據集:(A組)在所有層中只允許單一且同一種模式存在,其中對於滿足m=m_single 的位置則在其所有的徑向層中Amp(r,m)≠0,而對於m≠m_single 的位置則 Amp(r,m)=0,其中 m_single 是作為單一模式的選定模式編號。 (B組)每個徑向層中只允許單一模式,而在不同徑向層之間可以是不同模式,並且各個模式可以有不同的值,其中Amp(r,m_single (r))≠0僅當m=m_single時成立,而對於m≠m_single 的位置則 Amp(r,m)=0。 (C組)允許多種模式存在於每個徑向層。 由數據集(A 組)訓練的 DNN 在三種情況中表現最好,平均絕對誤差(MSE)低於 1%,均方誤差MSE 低於 500 Hz(10% 的密度擾動的振盪頻率分佈的最大頻率)。 其他兩種情況(B 組)和(C 組)無法顯示具有可接受誤差範圍的重建結果。

    Conventional reconstruction method of spatial profiles of plasma parameters including density, temperature, etc. from line-integrated signals assume macroscopically static plasma states. In most cases, however, plasmas (especially in fusion plasma experiments) evolve dynamically in space and time. Therefore, we attempt at establishment of a novel reconstruction method of spatio temporal evolution of cross-sectional profiles of plasma density with the use of deep neural network (DNN) from line-integrated density n_e L(x,t) measured by an interferometer, where x and t denote the position of the cords and time, respectively. The idea is to regard the reconstruction process as an image reconstruction, which is a DNN’s area of expertise. That is, a spatio temporal evolution of the line-integrated density n_e L(x,t) (equivalently power spectra (n_e L) ̃(x,f) and the phase spectra ϕ(x,f) ) is taken as an input image to DNN and the corresponding output is a dynamic image of the cross-sectional density distribution. As a first step, we develop and train DNNs using datasets produced by a numerical simulation of interferometer measurement for prepared various profiles of sheared rotating plasmas, whose density profiles are expressed as the following from: n_e (r,t)=∑_r〖∑_m〖Amp(r,m)cos⁡(mθ-ω(r,m)〗 t+θ_0 〗), where r,Amp(r,m), m, θ, ω(r,m), … are radial position, amplitude, the poloidal mode number, the poloidal angle, the angular frequency, …, respectively. m ranges 0 to 4. The following three data sets are prepared: (Group A) only a single m allows at all layers, in which Amp(r,m)≠0 in all radial layers for m=m_single, and Amp(r,m)=0 for m≠m_single, where m_single is a selected mode number as the single mode. (Group B) only a single m is allowed at each radial layer, and respective m can have different values in which Amp=Amp(r,m_single (r))≠0 only for m=m_single, (Group C) multiple m is allowed at each radial layer. The DNN trained by the data set (Group A) shows the best performance among the three cases, mean absolute error (MSE) lower than 1%, and the profiles of oscillation frequency of the density perturbation with MSE lower than 500 Hz (10% of the maximum frequency). The other two cases (Group B) and (Group C) could not show reconstruction results with acceptable error ranges.

    1. Introduction..1 1.1 Plasma density as a fundamental physical quantity for control of plasmas1 1.1.1 Confinement issue of fusion plasmas1 1.1.2 Reconstruction of spatial profiles of plasma parameters from line-integrated measurement2 1.2 Dynamical reconstruction of electron density fluctuation profile with deep neural network (DNN) method 3 1.2.1 Development history of DNN 3 1.2.2 Application of DNN method to reconstruct 2-D image in Tokamak 4 1.3 Purpose of this research 5 2. The background theory of DNN 6 2.1What is DNN? 6 2.2 Brief explanation of the universal approximation theory 7 2.3 Backward propagation algorithm 9 2.4 Derivation of backward propagation 11 2.5 Backward Phase..14 3. Setup of laboratory plasma experiment 16 3.1 MPX device.16 3.1.1 Vacuum chamber and pumping system 16 3.1.2 Magnetic coil system 17 3.1.3 Plasma emitter 18 3.1.4 Data acquisition (DAQ) system 18 3.2 Diagnostic system 18 3.2.1 Langmuir probe 18 3.2.2 Langmuir probe arrays (LPAs) 19 3.3 Antenna-switching microwave interferometer system 20 4. Validation of DNN method using numerical simulation data of line-integrated measurement 23 4.1 Idea of spatial temporal density reconstruction using DNN method 23 4.2 Preparation of DNN training database 24 4.3 Survey of DNN setup 29 4.3.1 Exploration of optimal DNN structure.31 4.4 Density reconstruction with DNN method using simulation database38 4.4.1 Test of DNN in the database Group A 38 4.4.2 Test of DNN in the database Group B 43 4.4.3 Test of DNN in the database Group C 46 4.5 Summary 49 5. Validation of DNN method using experimental data of line-integrated measurement 50 5.1 Measurement of drift wave state by Langmuir probe arrays (LPAs) 50 5.2 Summary 54 6. Summary 56 7. Reference 58

    [1] A.E. Costley 2016 Nucl. Fusion 56 066003
    [2] ITER Disruption Mitigation Workshop, ITER HQ, 8 – 10 March 2017
    [3] J.A. Casey, E. Sevillano, J.H. Irby, and B.G. Lane, “A Pseudo-Tomographic Fitting Algorithm for Density Profile Reconstruction from a Sparse 1-D Interferometer Array”, Review of Scientific Instruments, (1987).
    [4] Yoshio Nagayama, “Tomography of m=1 mode structure in tokamak plasma using least-square-fitting method and Fourier-Bessel expansion”, Journal of Applied Physics 62, 2702 (1987).
    [5] A logical calculus of the ideas immanent in nervous activity. Warren S. McCulloch & Walter Pitts. The bulletin of mathematical biophysics volume 5, pages115–133 (1943)
    [6] Gradient Theory of Optimal Flight Paths, HENRY J. KELLEY, Published Online:6 Jun 2012
    [7] Diogo R. Ferreira, ORCID Icon, Pedro J. Carvalho ORCID Icon, Horácio Fernandes ORCID Icon & JET Contributors, Pages 47-56 | Received 28 Jun 2017, Accepted 25 Sep 2017, Published online: 02 Feb 2018
    [8] J. Santos, F. Nunes, M. Manso ,and I. Nunes, Review of Scientific Instruments 70, 521 (1999)

    下載圖示 校內:2023-09-08公開
    校外:2023-09-08公開
    QR CODE