簡易檢索 / 詳目顯示

研究生: 吳宛玉
Wu, Wan-Yu
論文名稱: 具自我組裝交替奈米層狀結構之含金屬非晶碳薄膜:從隨機結構到自我組裝交替奈米層狀結構
Self-assembled, Alternating Nano-layered Metal-containing Amorphous Carbon Thin Films:from Random Structures to Self-assembled, Alternating Nano-layered Structures
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 172
中文關鍵詞: 含金屬非晶碳薄膜自我組裝交替奈米層狀結構反應式磁控濺鍍
外文關鍵詞: alternating nano-layered structure, reactive magnetron sputtering, Self-assembled, Metal containing amorphous hydrogenated carbon t
相關次數: 點閱:125下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為研究含金屬非晶碳薄膜的成長及特性分析,其中自我組裝交替奈米層狀結構的發現及解釋為本文之重點。本研究中含金屬非晶碳薄膜之製作乃是以一傳統之反應式濺鍍沉積技術為之,於此沉積技術中僅使用了單一金屬靶材以及自轉但非公轉之基板,同時反應氣體之通入為連續式而非脈衝或交替式。研究中所使用之金屬包括鋁、矽、銅、白金、鐵以及鎳,使用之反應氣體為不同比例之甲烷與氬氣之混合氣體。於反應式濺鍍沉積實驗中之實驗變數包含甲烷之比例、工作壓力、工作距離、濺鍍功率、基板偏壓以及基板溫度。視鍍膜參數及金屬種類而定,所獲得之含金屬非晶碳薄膜具有三種不同之結構。第一種結構為非晶質碳、碳化物以及金屬之混合結構,此類薄膜包含了含鋁非晶碳薄膜與含矽非晶碳薄膜。在第二種結構中奈米顆粒均勻地分布於非晶碳基質中,其中奈米顆粒在含鐵非晶碳薄膜中為碳化鐵顆粒以及/或純鐵顆粒,在含鎳非晶碳薄膜中為碳化鎳顆粒以及/或純鎳顆粒,在含銅非晶碳薄膜中為純銅顆粒,在含白金非晶碳薄膜中為純白金顆粒。此兩種結構屬於眾所周知的含金屬非晶碳薄膜之結構,然而第三種結構卻為一新的發現。第三種結構為一種自我組裝交替奈米層狀之結構,其中奈米級富金屬層及乏金屬層交替出現,於顯微鏡下形成明顯之明暗對比。如此之奈米級富金屬層及乏金屬層構成一個週期,而周期之大小約為100到101奈米。本研究中為瞭解這三種不同結構形成的機制,首先探討了濺鍍速率、成份、結晶性、表面化學以及微結構間之相互關係,依此建立了形成自我組裝交替奈米層狀結構之參數範圍,同時也證實了自我組裝交替奈米層狀結構可藉由製程參數之控制以及金屬靶材之選擇而獲得。最後,本研究並提出自我組裝交替奈米層狀結構的成長機制,其機制考量了金屬的團聚與碳的團聚、碳的析出、金屬的催化效應、碳化物的形成、adatom的能量以及金屬與碳的表面擴散等因素,並進一步以數據之分析佐證此一機制之正確性。

    The growth and characteristics of metal containing amorphous hydrogenated carbon thin films (a-C:H/Me) were studied in this research. The discovery and the explanation of unprecedented self-assembled, alternating nano-layered structures are addressed. a-C:H/Me thin films were synthesized using one single target, a rotating but not revolving substrate, and constant feed gas compositions in a conventional reactive sputter deposition chamber. The metals used include Al, Si, Cu, Pt, Fe and Ni. Various mixtures of methane and argon having fixed total flowrates were used as the feedstocks. A number of growth parameters, including methane concentration, working pressure, electrode distance, dc power, substrate bias, and substrate temperature were used. The resulting a-C:H/Me thin films were found to exhibit three different structures. In the first group, including a-C:H/Al and a-C:H/Si thin films, mixtures of amorphous carbon, carbide, and possible some metal were observed. In the second group, nanoparticles are distributed homogeneously in an a-C matrix. The nanoparticles are iron carbide and Fe in the case of a-C:H/Fe thin films, nickel carbide and nickel in the case of a-C:H/Ni thin films, and pure Cu and Pt in the cases of a-C:H/Cu and a-C:H/Pt thin films, respectively. While the formation of the first and the second groups of the structures is well-known, the formation of the third group of structures represents a new discovery. In the third group, unprecedented self-assembled, alternating nano-layered structures were observed in a-C:H/Cu, a-C:H/Pt , a-C:H/Fe, and a-C:H/Ni thin films. These films consist of alternating dark and bright nano-layers, both of which constitute a period. The periodicities of the nano-layered structures range from 100 to 101 nm. A dark layer was found to always have a higher metal concentration than a bright layer in a period. In order to explain the formation of these three distinct structures, correlations were first made among the deposition rate, the composition, the crystallinity, the surface chemistry, and the microstructure of a-C:H/Me thin films. As a result, a processing window was obtained for the formation of the self-assembled, alternating nano-layered structures. It was found that such self-assembled, alternating nano-layered structures can be obtained under controlled growth parameters for selected metals. A growth mechanism based on the considerations of clustering of carbon and metal, segregation of carbon, catalytic effects of metal, formation of carbide, energy of adatoms, and surface diffusion of metal and carbon, has been developed. Further data analysis was also performed to verify the validity of the mechanism.

    Chinese Abstract……………………………………………………………………………....I English Abstract………………………………………………………………………….…..II Acknowledgement/致謝……………………………………………………………………..IV Content………………………………………………………………………………………..V A List of Tables…………………………………………………………………………….VIII A List of Figures……………………………………………………………………………..IX Chap 1 Introduction...............................................................................................................1 Chap 2 The Materials……………………………………………………………………… 3 2.1 Carbon Thin Film……………………………………………………………………….. 3 2.1.1 Structures and Classifications……………………………………………………3 2.1.2 Raman Analysis of Amorphous Carbon Thin Films…………………………..5 2.1.3 Deposition Methods…………………………………………….………………10 2.2 Metal Containing Carbon Films………………………………………………………...14 2.2.1 Introduction…………………………………………………………………14 2.2.2 Structural Classifications of Metal Containing Carbon Films………………….16 Chap 3 Fundamentals……………………………………………………………………..21 3.1 Sputter Deposition…..….……………………………………………………………….21 3.2 Reactive Magnetron Sputter Deposition..…….………………………………………...27 3.2.1 Introduction……………………………………………………………………..27 3.2.2 Species in Reactive Magnetron Sputter Deposition….…………..……………..30 3.2.3 Energy Distribution of Species in Reactive Magnetron Sputter Deposition……35 3.3 Film Growth…………………………………………………………………………….39 3.4 Free Energies of Carbide Formation for Selected Metals………………………………44 Chap 4 Self-assembling of Thin Films Exhibiting Alternating Layered Structures…...47 4.1 Metal-carbon System…………………………………………………………………...47 4.1.1 Gerhard and Co-workers’ (a-C:Au and a-C:Fe)………………………………47 4.1.2 Corbella and Co-workers’ (a-C:H/Ti)…………………………………………..50 4.1.3 Hovespian and Co-workers’ Study (a-C:Cr)………………………………….52 4.1.4 Claverie, Foo, and Their Co-workers’ (a-C:Si)………………………………56 4.2 Other Systems…………………………………………………………………………..58 4.2.1 Carbon-Ceramic (ZnO-C)………………............................................................58 4.2.2 Alloy System (Au-Ni and Si-Ge)……………………………………………….59 4.2.3 Metal-Ceramic (Al-Al4C3)...................................................................................62 4.3 Summary………………………………………………………………………………..65 4.4 Research Objectives…………………………………………………………………….67 Chap 5 Experimental and Characterization Techniques………………………………..69 5.1 Experimental……………………………………………………………………………69 5.1.1 Sputter Deposition System……………………..………………………………69 5.1.2 Experimental Procedures……………………………………………………….70 5.1.3 Experimental Parameters……………………………………………………….71 5.2 Characterization Techniques……………………………………………………………74 5.2.1 Grazing Incidence X-ray Diffractometry (GIXD)…………………….………..74 5.2.2 Raman Spectroscopy……………………………………………………………75 5.2.3 Depth Profiled Auger Electron Spectroscopy (DP-AES)...…………………….76 5.2.4 Secondary Ion Mass Spectrometry (SIMS)…………………………………….77 5.2.5 Scanner Electron Microscopy Analysis (SEM)………………………………...78 5.2.6 Atomic Force Microscopy (AFM)……………………………………………...79 5.2.7 Transmission Electron Microscopy Analysis (TEM)…………………………..80 Chap 6 Growth and Characteristics of a-C:H/Me Thin Films………………………….81 6.1 Surface Morphology and Cross Sectional Views……………………………………….81 6.2 Deposition Rate…………………………………………………………………………86 6.3 Composition (Energy dispersive spectrometry analysis)……………………………….90 6.4 Structures………………………………………………………………………………..93 6.5 Discussions……………………………………………………………………………..108 Chap 7 a-C:H/Me Thin Films Exhibiting Alternating Layered Structures…………..119 7.1 Observations of Alternating Layered Structures………………………………………119 7.1.1 SEM Cross Sectional Image Analysis…………………………………………120 7.1.2 TEM Cross Sectional Image Analysis………………………………………..120 7.1.3 SIMS Analysis………………………………………..………………………..129 7.1.4 Depth Profiled AES Analysis………………………………………………….131 7.1.5 Summary………………………………………………………………………133 7.2 Effects of Growth Parameters on the Formation and the Period of Layered a-C:H/Me Thin Films……………………………………………………………………………..134 7.2.1 Target Materials and Methane Concentration…………………………………134 7.2.2 Working Power, Electrode Distance, and Working Pressure………………….140 7.2.3 Substrate Bias, Temperature, and Condition…………………………………..144 7.2.4 Deposition Conditions Favoring the Formation of Layered a-C:H/Me Thin Films………………………………………………………………………..147 7.3 Discussions…………………………………………………………………………….149 Chap 8 Mechanism for Growing Self-assembled Layered a-C:H/Me Thin Films…153 Chap 9 Conclusions………………………………………………………………………161 References…………………………………………………………………………………..163 Resume……………………………………………………………………………………...170

    [1] P. Koidl, C. Wagner, B. Dischler, J. Wagner, M. Ramsteiner, Mater. Sci. Forum v52 (1990) p41.
    [2] J.C. Angus, C.C. Hayman, Science v241 (1988) p913.
    [3] U. Kreibig and M. Vollmer, Optical properties of metal clusters, Springer, New York 1995.
    [4] M.S. Dresselhaus, G. Grasselhause, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, London, 1996.
    [5] B.T.Kelly, Physics of Graphite, Applied Science Publisher, London, 1981.
    [6] W. Jacob, W. Moller, Appl. Phys. Lett. v63 (1990) p1771.
    [7] J. Robertson, Materials Science and Engineering R 37 (2002) p129.
    [8] A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New Journal of Physics v5 (2003) p139.1.
    [9] M.A. Tamor, W.C. Vassell, J. Appl. Phys. v76 (1994) p3823.
    [10] A. C. Ferrari, Diamond and Related Materials v11 (2002) p1053.
    [11] D. G. McCulloch, S. Prawer, and A. Hoffman, Phys. Rev. B v50 (1994) p5905.
    [12] P. Tan, Y. Deng, and Q. Zhao, Phys. Rev. B v58 (1998) p5435.
    [13] F. Li and J. S. Lannin, Phys. Rev. Lett. v65 (1990) p1905.
    [14] D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Phys. Rev. B v30 (1984) p870.
    [15] S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Diamond Relat. Mater. v5 (1996) p433.
    [16] J. Ristein, R. T. Stief, L. Ley, and W. Beyer, J. Appl. Phys. v84 (1998) p3836.
    [17] F. Rossi, B. Andre, A. vanVeen, P.E. Mijenarends, H. Schut, M.P. Delplancke, W. Gissler, J. Haupt, G. Lucazeau, L, Abello, J. Appl, Phys. v75 (1994) p3121.
    [18] H.R. Kaufmann, J. Vac. Sci. Technol. v15 (1978) p272.
    [19] B. Druz, R. Ostan, S. Distefano, A. Hayes, V. Kanarov, V. Polyakov, Diamond Rel. Mater. v7 (1998) p965.
    [20] Y. Lifshitz, G.D. Lempert, E. Grossman, Phys. Rev. Lett. v72 (1994) p2753.
    [21] J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu, Appl. Phys. Lett. v58 (1991) p466.
    [22] B.K. Tay, G.F. You, S.P. Lau, X. Shi, Surf. Coatings Technol. v133 (2000) p593.
    [23] M.P. Siegal, J.C. Barbour, P.N. Provencio, D.R. Tallant, T.A. Friedmann, Appl. Phys. Lett. v73 (1998) p759.
    [24] V.I. Merkulov, D.H. Lowndes, G.E. Jellison, A.A. Puretzky, D.B. Geohegan, Appl. Phys. Lett. v73 (1998) p2591.
    [25] M. Weiler, K. Lang, E. Li, J. Robertson, Appl. Phys. Lett. v72 (1998) p1314.
    [26] T. Mori, Y. Namba, J. Appl. Phys. v55 (1984) p3276.
    [27] M.A. Tamor, Mater. Res. Soc. Symp. Proc. v383 (1995) p423.
    [28] C. Ronning, Doctoral Thesis, University of Konstanz, Hartung-Gorre Verlag, Konstanz 1996.
    [29] J. Schwan, S. Ulrich, T. Theel. H. Roth, H. Ehrhardt, P. Becker, S.R.P. Silva, J. Appl. Phys. v82 (1997) p6024.
    [30] Morshed MM, McNamara BP, Cameron DC, Hashmi MSJ. Surf. Coat. Technol. v163-164 (2003) p541.
    [31] Podgornik B, Vizintin J. Influence of substrate treatment on the tribological properties of DLC coatings. Diamond and Related Materials v10 (2001) p2232.
    [32] Chio HW, Moon MW, Kim TY, Lee KR, Oh KH. Mat. Res. Soc. Symp. Proc. v795 (2003) p87.
    [33] A. Antilla, R. Lappalainen, V.M. Tiainen, M. Hakovirta, Adv. Mater. v9 (1997) p1161.
    [34] H. Dimigen, Surf. Coatings Technol. v49 (1991) p453.
    [35] K. Bewilogua, C.V. Cooper, C. Specht, J. Schroder, R. Wittorf, M. Grischke, Surf. Coat. Technol. v127 (2000) p224.
    [36] H. Dimigen, C.P. Klages, Surf. Coatings Technol. v49 (1991) p543.
    [37] K. Bewilogua, H. Dimigen, Surf. Coat. Technol. v61 (1993) p144.
    [38] C.P. Klages, H. Koberle, M. Bauer, R. Memming, in: J.P. Dismukes (Ed.), Proc. Int. Symp. on Diamond and Diamond-like Films, Elec. Chem. Soc. Proc., Vol. 89, Pennington, NJ.
    [39] I. Gerhards, C. Ronning, U. Vetter, H. Hofsass, H. Gibhardt, G. Eckold, Q. Li, S.T. Lee, Y.L. Huang, M. Seibt, Surf. Coat. Technol. v158-159 (2002) p114.
    [40] K. Bewilohua, R. Wittorf, H. Thomsen, M. Weber, Thin Solid Films v447-448 (2004) p142.
    [41] J.S. Chen, S.P. Lau, Z. Sun, G.Y. Chen, Y.J. Li, B.K. Tay, J.W. Chai, Thin Solid Films v398-399 (2001) p110.
    [42] A. Okamoto, Y. Suzuki, M. Yoshitake, S. Ogawa, N. Nakano, Nuclear Instruments and Methodes in Physics Research B v121 (1997) p179.
    [43] G.Y. Chen, J.S. Chen, Z. Sun, Y.J. Li, S.P. Lau, B.K. Tay, J.W. Chai, Applied Surface Science v180 (2001) p185.
    [44] R.J. Narayan, H. Wang, A. Tiwari, Mat. Res. Soc. Symp. Proc. v750 (2003) Y5.9.1.
    [45] H. Dimigen, H. Hubsch, R. Memming, Appl. Phys. Lett. v50 (1987) p1056.
    [46] J. Vetter, W. Burgmer, H.G. Dederichs, A.J. Perry, Mater. Sci. Forum v163-164 (1994) p527.
    [47] A.A. Voevodin, M.A. Capano, S.J.P. Laube, M.S. Donley, J.S Zabinski, Thin Solid Films v298 (1997) p107.
    [48] A.A. Voevodin, S.E. Spassky, A.L. Yerokhin, Thin Solid Films v207 (1992) p117.
    [49] R.J. Narayan, Diamond and Related Materials v14 (2005) p1319.
    [50] C.P. Klages, R. Memming, Mater. Sci. Firum v52-53 (1989) p609.
    [51] T. Cabioc’h, A. Naudon, M. Jaouen, D. Thiaudi´ere, and D. Babonneau, Phil. Mag. B v79 (1999) p501.
    [52] S.J. Park, K.R. Lee, D.H. Ko, K.Y. Eun, Diamond and Related Materials v11 (2002) p1747.
    [53] K.I. Schiffmann, M. Fryda, G. Goerigk, R. Lauer, P. Hinze, A. Bulack, Thin Solid Films v347 (1999) p60.
    [54] H. Holleck and V. Schier, Surf. Coat. Technol. v76/77 (1995) p328.
    [55] T. Tsakalakos, J.E. Hilliard, J. Appl. Phys. v54 (1983) p734.
    [56] R.W. Springer, D.S. Catlett, Thin Solid Films v54 (1978) p197.
    [57] S.L. Lehoszki, J. Appl. Phys. v49 (1978) p5479.
    [58] M. Kato, T. Mori, L.H. Schwartz, Acta Metall. v28 (1980) p285.
    [59] A.F. Jankowski, J. Phys. F v18 (1988) p413.
    [60] X. Chu, S.A. Barnett, Mater. Res. Soc. Symp. Proc. v382 (1995) p291.
    [61] A. Pinyol, E. Bertran, C. Cobella, M.C. Polo, J.L. Andujar, Diamond and Related Materials v11 (2002) p1000.
    [62] H. Ziegele, H.J. Scheibe, B. Schultrich, Surf. Coat. Technol. v97 (1997) p385.
    [63] M.P. Delplancke-Ogletree, O.R. Monteiro, Surf. Coat. Technol. v108-109 (1998) p484.
    [64] C. Rincon, G. Zambrano, A. Carvajal, P. Prieto, H. Galindo, E. Martinez, A. Lousa, J. Esteve, Surf. Coat. Technol. v148 (2001) p277.
    [65] C. Stronal, N.M. Carvalho, J.Th.M. De Hosson, G.J. van der Kolk, Surf. Coat. Technol. v162 (2003) p288.
    [66] W.Y. Wu, J.M. Ting, Chemical Physics Letters v388 (2004) p312.
    [67] I. Gerhards, H. Stillrich, C. Ronning, H. Hofsass, Physical Review B v70 (2004) p245418.
    [68] C. Corbella, B. Echebarria, L. R. Piscina, E. Pascual, J. L. Andujar, E. Bertran, Applied Physics Letters v87 (2005) p213117.
    [69] P.Eh. Hovsepian, Y.N. Kok, A.P. Ehiasarian, R. Haasch, J.G. Wen, I. Petrov, Surface & Coating Technology v200 (2005) p1572.
    [70] M. Ohring, The Materials Science of Thin Films, Academic Press 1992.
    [71] D.L. Smith, Thin-Film Deposition-Principles and Practice, McGraw-Hill 1995.
    [72] P. Sigmund, Physical Review 184 (1969) 383.
    [73] J.L. Vossen, W. Kern, Thin Film Processes, Academic Press 1978.
    [74] H. Oechsner, Applied Physics 8 (1975) 185.
    [75] B. Chapman, Glow Discharge Processes-Sputtering and Plasma Etching, John Wiley & Sons, Inc. 1980.
    [76] H.F. Winters, Adv. In Chemistry Series No.158, Radiation Effects on Solid Surfaces, ed. M. Kaminsky, American Chemical Society 1976.
    [77] W.D. Westwood, J. Vac. Sci. Technol. v15 (1978) p1.
    [78] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag 1992.
    [79] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications 1998.
    [80] R.F. Bunshah, Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, Noyes Publications 1994.
    [81] J.E. Sundgren, B.O. Johansson, S.E. Karlsson, Surf. Sci. v128 (1983) p265.
    [82] I. Safi, Surface and Coating Technology v127 (2000) p203.
    [83] R.K. Janev, D. Reiter, Physics of Plasmas v9 (2002) p4071.
    [84] M. Misina, Surface and Coating Technology v169-170 (2003) p53.
    [85] M.P. Fitzner, J.R. Abelson, Mat. Res. Soc. Symp. Proc. v339 (1994) p435.
    [86] A. Buuron, H. Bolt, P. Nizot, F. Koch, Surface Engineering v14 (1998) p405.
    [87] P.X. Yan, X.C. Wu, Materials Chemistry and Physics v60 (1999) p44.
    [88] M. Misina, P. Pokorny, Surface and Coating Technology v173-174 (2003) p914.
    [89] Y.H. Liu, J. Li, D.P. Liu, T.C. Ma, G. Benstetter, Surface and Coating Technology v200 (2006) p5819.
    [90] G. Cicala, P. Bruno, A.M. Losacco, G. Mattei, Surface and Coating Technology v180-181 (2004) p222.
    [91] P.V. Renden, S. Lucas, R. Winand, Surface and Coating Technology v61 (1993) p151.
    [92] M.W. Thompson, Philos. Mag. v18 (1968) p377.
    [93] H. Oechsner, Physical Review Letters v24 (1970) p583.
    [94] A. Furuya, Y. Ohshita, A. Ogurs, J. Vac. Sci. Technol. A v18 (2000) p2854.
    [95] K. Meyer, I.K. Schuller, C. M. Falco, J. Appl. Phys. v52 (1981) p5803.
    [96] R.V. Stuart, G.K. Wehner, Journal of Applied Physics v35 (1964) p1819.
    [97] C.V. Thompson, Annu. Rev. Mater. Sci. v30 (2000) p159.
    [98] J.A. Thornton, Ann. Rev. Mater. Sci. v7 (1977) p239.
    [99] G.S. Bales, A. Zangwill, J. Vac. Sci. Technol. A v9 (1991) p145.
    [100] P.B. Barna, M. Adamik, Thin Solid Filmd v317 (1998) p27.
    [101] I. Petrov, P.B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Technol. A v21 (2003) s117.
    [102] M. Audronis, P.J. Kelly, A. Leyland, A. Matthews, Thin Solid Films v515 (2006) p1511.
    [103] J.J. Flsher, Handbook of thermodynamic tables and diagrams, New York McGraw-Hill 1915.
    [104] I. Gerhards, C. Ronning, H. Hofsass, M. Seibt, H. Gibhardt, Journal of Applied Physics v93 (2003) p1203.
    [105] A. Claverie, J. Faure, J.L. Balladore, L. Simon, A. Mesli, M. Diani, L. Kubler, D. Aubel, Journal of Crystal Growth v157 (1995) p420.
    [106] Y.L. Foo, K.A. Bratland, B. Cho, C.W. Lim, J. Baker, J.G. Wen, D.W. Moon, J.E. Greene, Physical Review Letters 90 (2003) 235502
    [107] Q. Li, K.W. Kwong, D. Ozkaya, D.J.H. Cockayne, Physical Review Letters v92 (2004) p186102.
    [108] J.H. He, C.A. Carosella G.K. Hubler, S.B. Qadri, J.A. Sprague, Physical Review Letters v96 (2006) p056105.
    [109] P. Venezuela, J. Tersoff, J.A. Floro, E. Chason, D.M. Follstaedt, F. Liu, M.G. Largally, Nature v397 (1999) p678.
    [110] D. Biro, A. Kovacs, L. Szekely, A. Devenyi, P.B. Barna, Surface and Coating Technology v200 (2006) p6263.
    [111] B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, MA 1978.
    [112] D. J. Gardiner, P. R. Graves (Eds.), Practical Raman spectroscopy, Springer Verlag, Berlin Heidelberg 1989.
    [113] D. BRIGGS, M. P. SEAH, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Wiley, New York 1983.
    [114] G. Gillen, R. Lareau, J. Bennett, F. Stevie, G. Gillen, Secondary Ion Mass Spectrometry SIMS XI, Wiley 1998.
    [115] Stanley L. Flegler, John W. Heckman, Jr., Karen L. Klomparens, Scanning and transmission electron microscopy: an introduction, Oxford University Press, 1994.
    [116] M.T. Bray, Samuel H. Cohen, and Marcia L. Lightbody, Atomic Force Microscopy/Scanning Tunneling Microscopy, Springer 1995.
    [117] D. B. Williams, C.B. Carter, Transmission Electron Microscopy-Basic Diffraction Imaging Spectrometry, Plenum Press, New York, 1996.
    [118] M.A. Liebermann, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley and Sons, New York, 1994.
    [119] L.Z. Mezey, J. Giber, Japanese Journal of applied Physics v20 (1982) p1569.
    [120] C.A. Davis, S.R.P. Silvea, K.M. Knowles, G.A.J. Amaratunga, M.W. Stobbs, Phys. Rev. Lett. v75 (1995) p4258.
    [121] A. C. Ferrari, J. Robertson, Physical Review B v61 (2000) p14095.
    [122] R.J. Narayan, Applied Surface Science v245 (2005) p420.
    [123] S. Hofmann, G. Csani, A.C. Ferrari, M.C. Payne, J. Robertson, Physical Review Letters v95 (2005) p036101.
    [124] M.A. Petersen, S. J. Jenkins, D.A. King, J. Phys. Chem. B v108 (2004) p5909.
    [125] A.L. Marsh, K.A. Becraft, G.A. Somorjai, J. Phys. Chem. B v109 (2005) p13619.
    [126] C.T. Au, M.S. Liao, C.F. Ng, J. Phys. Chem. A v102 (1998) p3959.
    [127] K.L. Chopra, Thin Film Phenomena, McGraw-Hill, New York 1969.

    下載圖示 校內:2010-07-03公開
    校外:2010-07-03公開
    QR CODE