| 研究生: |
陳怡芳 Chen, Yi-Fang |
|---|---|
| 論文名稱: |
可供一氧化氮檢測的毛細管電泳電化學晶片之研發 Development of Capillary Electrophoretic Chip with Electrochemical Detector for Detecting Nitric Oxide |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 毛細管電泳晶片 、NO 、中風 、電化學 |
| 外文關鍵詞: | electrochemical detection, capillary electrophoresis., nitric oxide, stroke |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一氧化氮(NO)與中風的形成在血管調節與神經細胞死亡過程關係密切;當中風成因之ㄧ的腦血管阻塞發生時,血管舒張因子(EDRF) NO釋放來調節其血管舒張。而在血管阻塞後導致的氧氣葡萄糖供輸受阻,會誘發週遭腦神經細胞內NO的大量生合成,進而使該部位的細胞次第受損,神經退化性疾病因應而生。故能藉由NO的量測來了解血液測試下血管阻塞情形,並可藉之評估細胞的受損情況。但NO在生理條件下並不安定,然可藉由其較安定的氧化態亞硝酸根(NO2-)、硝酸根(NO3-)之量測來對應。本研究即著力發展可偵測NO2-、NO3-的毛細管電泳電化學(CEEC)晶片,期望將來能被用於血液的快速檢測。此晶片乃以微機電製程,製作出具電化學微小電極之玻片與十字微流管道,以氧電漿處理接合及矽烷化反應的管道修飾,其電滲流遷移率(μEOF=5.79×10-4 cm2/sV)較經由氧電漿處理所呈現的(μEOF =4.23×10-4 cm2/sV)及NaOH處理者(μEOF =4.58×10-4 cm2/sV)為佳且穩定。NO2-以金工作電極,電位設定為+0.75 V (相對鉑擬參考電極),當注入與分離電場各為100 與80 V/cm,而當晶片的μEOF處在4.78×10-4 cm2/sV時,NO2-於分離後140 sec出現,在0.5~10 μM之間呈正相關(R2=0.9104),偵測極限可達0.1 μM。另在達成一次即能檢測NO2-與NO3-的總濃度之努力上,我們以鎘沉積於注入管道內,亦即先把還原NO3-,使其全變成NO2-,終究是量測所有的NO2-的方式來反應NO的含量。最後,也嘗試以鎘工作電極定電位於-0.80 V來量測NO3-,然現僅能於10~500 mM之間得到濃度與電流響應呈正相關(R2=0.9457)。當晶片之μEOF = 4.70×10-4 cm2/sV時,NO3-訊號於分離後約180 sec出現。如上結果,顯示將可作為設計雙工作電極的參考,以對真實樣本進行NO2-及NO3-的同時定量。
Nitric Oxide (NO) is closely related with vessel regulation and neuron death process. NO, endothelium-derived relaxing factor (EDRF), is released to regulate vessel when cerebral vessel is blocked. As ischemia, NO plays an important role in cell death process. Cerebral neurons around brocked vessel causing oxygen and glucose deficiency would be induced to synthasize and release NO. That leads to neurons damage and causes neurodegenerative diseases. So if NO could be monitored by blood test, the vessel blocked condition may be understood and further evaluted the level of neuron damage. But NO is unstable in biological fluid, however, it could be measured by evaluating its oxidative delivertives, nitrite and nitrate. In this study, we developed capillary electrophoretic chips with electrochemical detector (CEEC) for the detection nitrite and nitrate. The resulting chips were fabricated MEMS processes through O2 plasma following silianization treatment. As a result, we found that the μEOF showed a value in 5.79×10-4 cm2/sV, it is more stable than the treatments with O2 plasma (4.23×10-4 cm2/sV) or NaOH immersing procedure (4.58×10-4 cm2/sV). As the detecting potential is set at +0.75 V (vs. pseudoplatinum), nitrite signal appears at around 140 sec when the injection field is 100 V/cm, separation field is 80 V/cm, and μEOF of the chip is 4.78×10-4 cm2/sV. Nitrite responded linearly in 0.5~10 μM (R2=0.911) and the limit of detection is 0.1 μM. On the other hand, we also deposited cadimium and integrated it in the injection channel to reduce nitrate, however, it only resulted in a linear response to nitrate from 10 to 500 mM (R2=0.946) as the potential set at -0.8 V. Nitrate signal appears at ca. 180 sec when injection field is 100 V/cm, separation field and μEOF of the chip are 80 V/cm and 4.70×10-4 cm2/sV, respectively. The results described above provide us a valuable indicator to design the CEEC chip that can quantitatively detect nitrite and nitrate in one test.
[1] http://www.med.umich.edu/1libr/aha/stroke.gif
[2] http://www.med.umich.edu/1libr/aha/aha_stroke_art.htm
[3] http://www.cmuh.org.tw/HTML/dept/1820/newmessage/neruexam.htm
[4] D. Yao, A. G. Vlessidis, and N. P. Evmiridis, Determination of ntric oxide in biological samples, Microchim. Acta, 147, 1-20, 2004
[5] T. Malinski, Z. Taha, S. Grunfeld, S. Patton, M. Kapturczak, and P. Tomboulian, Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors, Biochem. Res. Biophys. Res. Commun., 193, 1076-1082, 1993
[6] G. H. Danton and W. D. Dietrich, The search for neuroprotective strategies in stroke, AJNR Am J Neuroradio, 25, 181-194, 2004
[7] T. M. Dawson and V. L. Dawson, Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system, Annu. Rev. Med., 47, 219–227, 1996
[8] B. Chen, M. Keshive, and W. M. Deen, Diffusion and reaction of nitric oxide in suspension cell cultures, Biophys. J., 75, 745-754, 1998
[9] T. Malinski and Z. Taha, Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor, Nature, 358, 676-678, 1990
[10] M. A. Marletta, Nitric oxide: biosynthesis and biological significance, Trends Biochem. Sci., 14, 488-492, 1989
[11] S. Moncada, M. J. Palmer, and E. A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmac. Rev., 43, 109-142, 1991
[12] M. Goto, K. Sato, A. Murakami, M. Tokeshi, and T. Kitamori, Development of a microchip-based bioassay system using cultured cells, Anal. Chem., 77, 2125-2131, 2005
[13] Y. Yoon, J. Song, S. H. Hong, and J. Q Kim, Plasma nitric oxide concentrations and nitric oxide synthase gene polymorphisms in coronary artery disease, Clini. Chem., 46, 1626-1630, 2000
[14] V. Jedlickova, Z. Paluch, and S. Alusik, Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma, J. Chromatogr. B, 780, 193-197, 2002
[15] D. Tsikas, R. H. Boger, S. M. Bode-Boger, F.-M. Gutzki, and J. C. Frolich, Quantification of nitrite and nitrate in human urine and plasma as pentafluorobenzyl derivatives by gas chromatography-mass spectrometry using their 15N-labelled analogs, J. Chromatogr. B, 661, 185-191, 1994
[16] J. M. Monaghan, K. Cook, D. Gara, and D. Crowther, Determination of nitrite and nitrate in human Serum, J. Chromatogr. A, 770, 143-149, 1997
[17] M. R. L. Stratford, M. F. Dennis, R. Cochrane, C. H. S. Parkins, and S. A. Everett, The role of nitric oxide in cancer improved methods for measurement of nitrite and nitrate by high-performance ion chromatography, J. Chromatogr. A, 770, 151-155, 1997
[18] G. Zunic, S. Spasic, and Z. Jelic-Ivanovic, Simple and rapid method for the measurement of nitrite and nitrate in human plasma and cerebrospinal fluid by capillary electrophoresis, J. Chromatogr. B, 727, 73-79, 1999
[19] H. Preik-Steinhoff and M. Kelm, Sensitive determination of nitrotyrosine in human plasma by isocratic high-performance liquid chromatography, J. Chromatogr. B, 685, 348-352, 1996
[20] D. Tsikas, S. Rossa, J. Sandmann, and J. C. Frolich, High-performance liquid chromatographic analysis of nitrite and nitrate in human plasma as S-nitroso-N-acetylcysteine with ultraviolet absorbance detection, J. Chromatogr. B, 724, 199-201, 1999
[21] Z. Radisavljevic, M. George, D. J. Dries, and R. L. Gameli, Determination of intercellular and extracellular nitrite and nitrate by anion chromatography, J. Liq. Chromatogr., 19, 1061-1079, 1996
[22] H. Moshage, B. Kok, J. R. Huizenga, and P. L. M. Jansen, Nitrite and nitrate determinations in plasma: a critical evaluation, Clin. Chem., 41, 892-896
[23] X. Zhang, J. Lin, L. Cardoso, M. Brodericka, and V. D. Usmar, A novel microchip nitric oxide sensor with sub-nM detection limit, Electroanalysis, 2002, 14, 697-703
[24] E. Morcos and N. P. Wiklund, Nitrite and nitrate measurement in human urine by capillary electrophoresis, Electrophoresis, 2001, 22, 2763-2768
[25] L. L. Moroz, R. Gillette, and J. V. Sweedler, Single-cell analyses of nitrergic neurons in simple nervous systems, J. Experi. Biol., 1999, 202, 333-341
[26] R.-L. Chien, Comment on “Electrokinetic Stacking Injection of Neutral Analytes under Continuous Conductivity Conditions”, Anal. Chem., 2002, 74, 3929-3930
[27] L. Gao, J. Barber-Singh, S. Kottegoda, D. Wirtshafter, and S. A. Shippy, Determination of nitrate and nitrite in rat brain perfusates by capillary electrophoresis, Electrophoresis 2004, 25, 1264-1269
[28] M. Maskus, F. Pariente, Q. Wu, A. Toffanin, J. P. Shapleigh, and H. D. Abruna, Electrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)2]3+ and their application to cellular NO determinations, Anal. Chem., 1996, 68, 3128-3134
[29] http://antibody.stressgen.com/index.lasso
[30] http://bio.merck.com.tw/signtran.asp?pgurl=signtran.asp&tp1id=03&tpid=0312
[31] http://www.caymanchem.com/app/template/kitRecommendation%252cNitrateNitrite.vm/a/z;jsessionid=D76912734F1F7F5B5C15378119615A96
[32] J. Sun and X. Zhang, Measurement of nitric oxide production in biological systems by using Griess reaction assay, Sensors, 2003, 3, 276-268
[33] C. C. Wu, R. G. Wu, J. G. Huang, Y. C. Lin, and H. C. Chang, Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection, Anal. Chem., 2003, 75, 947-952
[34] J. J. Pesek, and M. T. Matyska, Methods for the modification and characterization of oxide surfaces, Interf. Sci. 1997, 5, 103-117.
[35] K. Najwa and W. W. Nabil, Determination of inorganic nitrate in serum and urine by kinetic cadmiumium-reduction method, Clin. Chem., 1990, 36, 1440-1443
[36] J. A. Navarro-Gonzálvez, C. García-Benayas, and J. Arenas, Semiautomated measurement of nitrate in biological fluids, Clin. Chem., 1998, 44, 679
[37] C. R. Warren and M. A. Adams, Capillary electrophoresis of the major anions and cations in leaf extracts of woody species, Phytochem. Anal., 2004, 15, 407-413
[38] M. A. Woodland and C. A. Lucy, Altering the selectivity of inorganic anion separations using electrostatic capillary electrophoresis, Analyst, 2001, 126, 28-32
[39] X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. L. Allbritton, Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane), J. Chromatogr. B, 2001, 762, 117-125
[40] G. E. Dima, A. C. A. de Vooys, and M. T. M. Koper, Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions, J. Electroanal. Chem., 2003, 554, 15-23