簡易檢索 / 詳目顯示

研究生: 謝宗勳
Hsieh, Tsung-Hsun
論文名稱: 重複性經顱磁刺激對於帕金森氏大鼠大腦塑性與運動功能之影響
Effects of Repetitive Transcranial Magnetic Stimulation on Brain Plasticity and Motor Function in Parkinsonian Rats
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 113
中文關鍵詞: 帕金森氏症重複性經顱磁刺激6-羥基多巴胺大鼠步行功能步態分析運動誘發電位長間期皮質內抑制陣發型磁波刺激
外文關鍵詞: rTMS, 6-OHDA, rats, locomotor function, gait analysis, motor evoked potential, long-interval intracortical inhibition, theta burst stimulation
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帕金森氏症是一種常見於老年人之神經退化性疾病,常出現肌肉僵直、震顫和行動障礙等症狀。即使多巴胺取代性藥物對於大多數帕金森症患者提供良好的控制,但藥物治療對於症狀減輕並不完全,且長期的使用藥物往往會出現副作用。因此,對於此疾病新的治療方法將是目前發展的主要任務。間歇型陣發磁波刺激術為一種新穎的重複性經顱磁刺激模式,過去研究發現對於運動皮質的興奮性可維持較長的效果,這個效果或許可以減輕帕金森氏症所產生的運動障礙等症狀。然而,對於此模式的治療潛力目前仍尚未清楚研究。有鑑於此,在導入間歇型陣發磁波刺激對於帕金森氏症之臨床治療前,我們使用帕金森氏症動物模型並設計一系列之實驗方法來驗證陣發型磁波刺激對於帕金森氏症可能的治療潛力。
    本實驗在大鼠之內側前腦束注射六-羥基多巴胺來建立半側損傷之帕金森大鼠模型,並進而評估間歇型陣發磁波刺激術之治療效果。從設計一個新式之重複性經顱磁刺激去治療帕金森氏症的觀點來看,需要就運動功能、動物行為與皮質塑性等之生物力學與電生理特性之交互作用來考量,本實驗的目的為使用新式的間歇性陣發磁波刺激(iTBS)模式為治療工具,在動物行為、皮質塑性、與免疫組織化學分析上探討磁波刺激對於帕金森氏大鼠之治療效果。
    在使用磁刺激為治療模式之前,許多定量化平台被發展來評估帕金森大鼠在患病後所呈現之肌肉僵直、皮質塑性之長期增益能力、長時程皮質內抑制功能、運動不能與步行能力。肌肉僵直的改變可以在帕金森大鼠清醒時使用微小生物力學牽張系統去手動牽張下肢來測量,並在不同牽張頻率去測量反應的力矩和角度變化。神經塑性可以在重複性經顱磁刺激前後,使用電生理測量動作誘發電位來驗證;在行為評估上,除了在帕金森大鼠中使用傳統的阿朴嗎啡誘發的旋轉行為和單槓測試上肢運動不能外,常見的步態缺損可以在我們所設計之步道以及使用半自動影像分析去進行步態模式驗證。
    為了在帕金森大鼠中調節皮質興奮性,本實驗使用高頻間歇型陣發磁波刺激模式來刺激大腦運動皮質,經由皮質脊髓徑路來誘發大腦皮質之長效增益模式,進而加強皮質塑性之產生。最後在治療組與控制組中藉由許多運動行為參數來進行每週療效性評估,並比較兩者在四週磁波治療後之成效差異。
    關於間歇型陣發磁波刺激介入的立即性效果,正常大鼠經過磁波刺激後,動作誘發電位在刺激五分鐘後上升,並維持約30分鐘 (p < 0.05),然而慢性帕金森氏大鼠則無明顯差別。此結果顯示間歇型陣發磁波刺激無法在帕金森氏症大鼠的運動皮質誘發出長期增益之神經塑性,其可能與多巴胺缺損的嚴重程度有關。另外,基於成對脈衝磁刺激之評估,慢性帕金森氏症大鼠在患側邊呈現缺少皮質抑制功能,此結果指出帕金森氏大鼠的運動皮質缺乏GABA抑制效應。最後,在長期進行重複性經顱磁刺激治療後,和未經過治療的帕金森大鼠相較下,即使磁波刺激對於皮質興奮性之提升效果只在早期損傷(損傷後一週)之帕金森氏大鼠中發現,但相對於控制組,連續四周之間歇型磁波刺激對於帕金森氏症大鼠之運動功能缺損有明顯的改善。
    我們整合的神經工程平台可以在帕金森氏動物中施行連續性經顱磁刺激治療後,提供一個獨特的機會來觀察帕金森氏症大鼠之運動表現與神經塑性,此方法可以在未來對於帕金森氏症之人類臨床治療時提供一個客觀之評估工具。此外,我們的研究指出帕金森氏大鼠的運動功能缺損可以在早期且長期之連續性經顱磁刺激介入後獲得改善,也進而確認每天使用間歇型磁波刺激後可達到持續性治療之效果,我們希望此結果或許可以在未來轉譯至人類帕金森氏症之臨床治療。

    Parkinson’s disease (PD) is a prevalent neurodegenerative disorder of the elderly which is characterized by progressive muscular rigidity, tremor and gait problems. Although dopaminergic replacement therapy provides benefit to most PD patients, the symptom relief is often incomplete, and chronic drug therapy is often limited by side-effects. Thus, new nonpharmacologic treatments for PD remain an important unmet medical need. Inermittent theta-burst stimulation (iTBS), a novel form of repetitive transcranial magnetic stimulation (rTMS), induces long-lasting enhancement of motor cortex excitability and theoretically may relieve PD motor symptoms. However, its therapeutic potential in PD has not been investigated. Accordingly, we conducted the present series of experiments to test the therapeutic potential of iTBS in a PD rat model, as an early step toward possible eventual clinical use of iTBS in PD.
    A hemiparkinsonian adult rat model, generated by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB), was used to evaluate the therapeutic potential of iTBS in PD. We deliberately used a rat PD model because the design of novel rTMS PD treatment necessitates consideration of the complex interactions of the biomechanical and electrophysiological aspects of motor function, behavior and cortical plasticity. The aim of these experiments was to investigate the efficacy of iTBS treatment in PD rats at three major levels: behavioral (as measured by targeted tasks), synaptic (as reflected in cortical plasticity) and molecular (as assayed by immunohistochemistry).
    Prior to iTBS, several quantitative platforms were developed to assess the time course changes of muscular rigidity, long-term potentiation (LTP)-like cortical plasticity, long interval intracortical inhibition (LICI), akinesa and locomotor function of hemiparkinsonian rats following 6-hydroxydopamine lesion. Changes in muscle rigidity were evaluated by a novel miniature biomechanical stretching device which manually stretched the hindlimb of awake PD rats, from which the reactive torque and angular displacement at different stretching frequencies were measured. Neuroplasticity was verified by electrophysiological measurements of motor evoked potentials (MEPs) before and after rTMS. For behavioral tests, in addition to traditional apomorphine-induced rotation and bar tests for akinesia, the gait pattern in PD rats was quantified by walking track test using image analysis for semiautomatic measurement of gait parameters.
    To modulate the cortical excitability in our preclinical studies, a human high frequency iTBS scheme was adapted to the rat PD model to induce lasting (LTP-like) changes in the excitability of the corticostriatal pathway in hemiparkinsonian rats. Several motor behavioral parameters were evaluated at weekly intervals for four consecutive weeks after daily administration of real or sham iTBS over the primary motor cortex.
    Immediately after iTBS, MEP amplitudes in normal rats increased significantly 5 min after stimulation and remained enhanced for up to 30 min (p < 0.05). In contrast, in PD rats, the MEPs remained unchanged immediately after iTBS. These results indicate the absence of iTBS-induced LTP-like plasticity in the motor cortex of PD rats and may be related to the severity of dopamine depletion. Based on the paired-pulse transcranial magnetic stimulation (ppTMS) protocol, LICI in chronic PD rats was altered, showing less cortical inhibition, behavior which was most evident in the affected hindlimbs. The LICI observation suggested the impairment of GABAergic inhibition in the motor cortex of PD rats. Regarding the long-term effects of rTMS, although iTBS changed cortical excitability only at the early stage (post-lesion 1 week) of PD rats, iTBS did reduce motor deficits in PD rats over a 4-week time-course of observation when compared with a sham control group.
    Our integrated neural engineering approach provides a unique opportunity to detect and measure the changes in motor performance and neuroplasticity in the PD rat model after rTMS interventions (such as iTBS), which might be useful for future objective assessment of novel treatments for human PD patients. In addition, our data suggest that the motor deficits in PD rats could be reduced by rTMS intervention early in the course of the disease. This confirms the existence of sustained benefits from consecutive daily iTBS, which we hope may be translated to human PD therapy.

    中文摘要...................................................i Abstract.................................................iii 誌謝......................................................vi List of Figures............................................x Abbreviation............................................xiii Chapter 1 Introduction.....................................1 1.1. Introduction to Parkinson’s disease and management.....1 1.2. Cortical dysfunction in PD............................2 1.3. Theta burst stimulation for modulating cortical excitability....................3 1.4. Application of rTMS in PD.............................4 1.5. PD animal models......................................6 1.6. Quantitative assessments of PD rats...................6 1.7. Motivation and the aims of this study.................7 Chapter 2 Materials and Methods...........................11 2.1. Chronic hemiparkinsonian rat model...................11 2.2. Design of the integrated rigidity assessment platform for PD rats........12 2.2.1 Miniature muscle tone assessment device.............12 2.2.2 Experimental design.................................16 2.3. Quantification of gait disturbance and related behavioral tests in PD rats....17 2.3.1 Animals.............................................17 2.3.2 Spatiotemporal analysis of gait patterns............18 2.3.3 Analysis of apomorphine-induced spontaneous rotation.............22 2.3.4 Bar test for akinesia...............................23 2.3.5 Immunohistochemistry................................23 2.3.6 Experimental design and statistical analysis........24 2.4. Mechanomyography for the assessment of cortical inhibition in awake rats..................................25 2.4.1 Electromyography and electromechanical coupling measurement...............................................26 2.4.2 Paired-pulse transcranial magnetic stimulation......27 2.4.3 Pharmacological effect in LICI......................28 2.4.4 Application of ppTMS-MMG for evaluation cortical inhibition in PD rats.....................................29 2.4.5 Data processing and statistical analysis............30 2.5. Electrophysiological assessments of cortical excitability in PD rats after rTMS........................31 2.5.1 Animal preparation..................................31 2.5.2 Experimental paradigm of one-session rTMS...........33 2.5.3 Statistical analysis of TBS effect..................34 2.6. Long-term treatment of rTMS..........................35 2.6.1 Subjects............................................35 2.6.2 General study design................................35 2.6.3 Statistical analysis................................36 Chapter 3 Results.........................................37 3.1. Time-course analysis of muscular rigidity in PD rats.37 3.2. Time-course analysis of gait pattern following PD lesion....................................................40 3.3. Behavioral tests.....................................50 3.3.1 Bar test............................................50 3.3.2 Apomorphine-induced rotation behavior...............51 3.4. Histological tests...................................52 3.5. Application of ppTMS-MMG for assessment of cortical inhibition................................................54 3.5.1 TMS-MMG feasibility.................................54 3.5.2 Simultaneous MEP and evoked MMG in rats.............55 3.5.3 LI-ppTMS and evoked MMG inhibition in awake rats....57 3.5.4 GABAA contribution to LI-ppTMS-MMG inhibition.......59 3.5.5 LICI measurement in PD rats.........................64 3.6. Effect of TBS on TMS measures in anesthetized rats...65 3.6.1 Effect of various TBS schemes on LTP or LTD-like plasticity................................................65 3.6.2 Effect of iTBS in PD rats...........................68 3.7. Effect of long term iTBS in PD rats..................70 Chapter 4 Discussions.....................................77 4.1. Biomechanical assessment of rigidity.................77 4.1.1 Time-course observation of stiffness after 6-OHDA injection.................................................77 4.1.2 Time-course observation of viscosity after 6-OHDA injection.................................................78 4.2. Locomotor and related motor behavior in PD rats......80 4.3. LICI assessment in awake rats........................85 4.4. Effect of iTBS on corticospinal excitability in PD rats......................................................88 4.5. Long term rTMS effects on motor functions............89 Chapter 5 Conclusions.....................................91 Chapter 6 Future Works....................................93 References................................................94 Appendix.................................................108

    Amende I, Kale A, McCue S, Glazier S, Morgan JP, and Hampton TG. Gait dynamics in mouse models of Parkinson's disease and Huntington's disease. J Neuroeng Rehabil 2: 20, 2005.
    Aydin-Abidin S, Trippe J, Funke K, Eysel UT, and Benali A. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 188: 249-261, 2008.
    Benabid AL, Benazzouz A, Hoffmann D, Limousin P, Krack P, and Pollak P. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord 13 Suppl 3: 119-125, 1998.
    Benninger DH, Berman BD, Houdayer E, Pal N, Luckenbaugh DA, Schneider L, Miranda S, and Hallett M. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology 76: 601-609, 2011.
    Bervar M. Video analysis of standing--an alternative footprint analysis to assess functional loss following injury to the rat sciatic nerve. J Neurosci Methods 102: 109-116, 2000.
    Blandini F, Levandis G, Bazzini E, Nappi G, and Armentero MT. Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 25: 397-405, 2007.
    Blin O, Ferrandez AM, and Serratrice G. Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J Neurol Sci 98: 91-97, 1990.
    Bornke C, Schulte T, Przuntek H, and Muller T. Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa challenge in Parkinson's disease. J Neural Transm 61-67, 2004.
    Bose P, Parmer R, and Thompson FJ. Velocity-dependent ankle torque in rats after contusion injury of the midthoracic spinal cord: time course. J Neurotrauma 19: 1231-1249, 2002.
    Breit S, Bouali-Benazzouz R, Benabid AL, and Benazzouz A. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14: 1833-1842, 2001.
    Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, and Buchel C. Pharmacologically modulated fMRI--cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126: 451-461, 2003.
    Chang JY, Shi LH, Luo F, and Woodward DJ. Neural responses in multiple basal ganglia regions following unilateral dopamine depletion in behaving rats performing a treadmill locomotion task. Exp Brain Res 172: 193-207, 2006.
    Chaniary KD, Baron MS, Rice AC, Wetzel PA, Ramakrishnan V, and Shapiro SM. Quantification of gait in dystonic Gunn rats. J Neurosci Methods 180: 273-277, 2009.
    Chee R, Murphy A, Danoudis M, Georgiou-Karistianis N, and Iansek R. Gait freezing in Parkinson's disease and the stride length sequence effect interaction. Brain 132: 2151-2160, 2009.
    Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154: 1-10, 2004.
    Chen R, Tam A, Butefisch C, Corwell B, Ziemann U, Rothwell JC, and Cohen LG. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80: 2870-2881, 1998.
    Chu J, Wagle-Shukla A, Gunraj C, Lang AE, and Chen R. Impaired presynaptic inhibition in the motor cortex in Parkinson disease. Neurology 72: 842-849, 2009.
    Deumens R, Blokland A, and Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175: 303-317, 2002.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, and Voges J. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 355: 896-908, 2006.
    Elahi B, and Chen R. Effect of transcranial magnetic stimulation on Parkinson motor function--systematic review of controlled clinical trials. Mov Disord 24: 357-363, 2009.
    Ellaway PH, Davey NJ, Maskill DW, and Dick JP. The relation between bradykinesia and excitability of the motor cortex assessed using transcranial magnetic stimulation in normal and parkinsonian subjects. Electroencephalogr Clin Neurophysiol 97: 169-178, 1995.
    Emborg ME. Evaluation of animal models of Parkinson's disease for neuroprotective strategies. J Neurosci Methods 139: 121-143, 2004.
    Fantin M, Auberson YP, and Morari M. Differential effect of NR2A and NR2B subunit selective NMDA receptor antagonists on striato-pallidal neurons: relationship to motor response in the 6-hydroxydopamine model of parkinsonism. J Neurochem 106: 957-968, 2008.
    Fearnley JM, and Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114 ( Pt 5): 2283-2301, 1991.
    Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas JF, Benabid AL, Chabardes S, and Pollak P. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease. Brain 133: 205-214, 2010.
    Fierro B, Brighina F, D'Amelio M, Daniele O, Lupo I, Ragonese P, Palermo A, and Savettieri G. Motor intracortical inhibition in PD: L-DOPA modulation of high-frequency rTMS effects. Exp Brain Res 184: 521-528, 2008.
    Fischer DA, Ferger B, and Kuschinsky K. Discrimination of morphine- and haloperidol-induced muscular rigidity and akinesia/catalepsy in simple tests in rats. Behav Brain Res 134: 317-321, 2002.
    Florio T, Scarnati E, Confalone G, Minchella D, Galati S, Stanzione P, Stefani A, and Mazzone P. High-frequency stimulation of the subthalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indirect activation of inhibitory pallidal fibres in the rat. Eur J Neurosci 25: 1174-1186, 2007.
    Fregni F, Simon DK, Wu A, and Pascual-Leone A. Non-invasive brain stimulation for Parkinson's disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry 76: 1614-1623, 2005.
    Funamizu H, Ogiue-Ikeda M, Mukai H, Kawato S, and Ueno S. Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats. Neurosci Lett 383: 77-81, 2005.
    Gamboa OL, Antal A, Laczo B, Moliadze V, Nitsche MA, and Paulus W. Impact of repetitive theta burst stimulation on motor cortex excitability. Brain Stimul 4: 145-151, 2011.
    Gentner R, Wankerl K, Reinsberger C, Zeller D, and Classen J. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex 18: 2046-2053, 2008.
    Giladi N, Treves TA, Simon ES, Shabtai H, Orlov Y, Kandinov B, Paleacu D, and Korczyn AD. Freezing of gait in patients with advanced Parkinson's disease. J Neural Transm 108: 53-61, 2001.
    Gilio F, Curra A, Inghilleri M, Lorenzano C, Manfredi M, and Berardelli A. Repetitive magnetic stimulation of cortical motor areas in Parkinson's disease: implications for the pathophysiology of cortical function. Mov Disord 17: 467-473, 2002.
    Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, and Ceballos-Baumann AO. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 124: 558-570, 2001.
    Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, and Goldberger AL. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease. Mov Disord 13: 428-437, 1998.
    Hefti F, Melamed E, Sahakian BJ, and Wurtman RJ. Circling behavior in rats with partial, unilateral nigro-striatal lesions: effect of amphetamine, apomorphine, and DOPA. Pharmacol Biochem Behav 12: 185-188, 1980.
    Helmich RC, Siebner HR, Bakker M, Munchau A, and Bloem BR. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson's disease. J Neurol Sci 248: 84-96, 2006.
    Hoffer JA, and Andreassen S. Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol 45: 267-285, 1981.
    Hoogendam JM, Ramakers GM, and Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3: 95-118, 2010.
    Hsieh TH, Dhamne SC, Chen JJ, Pascual-Leone A, Jensen FE, and Rotenberg A. A New Measure of Cortical Inhibition by Mechanomyography and Paired-pulse Transcranial Magnetic Stimulation in Unanesthetized Rats. J Neurophysiol 2011.
    Hsieh TH, Tsai JY, Wu YN, Hwang IS, Chen TI, and Chen JJ. Time course quantification of spastic hypertonia following spinal hemisection in rats. Neuroscience 167: 185-198, 2010.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, and Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 45: 201-206, 2005.
    Huang YZ, Rothwell JC, Edwards MJ, and Chen RS. Effect of physiological activity on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 18: 563-570, 2008.
    Hudson JL, van Horne CG, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, and Gerhardt GA. Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626: 167-174, 1993.
    Iezzi E, Suppa A, Conte A, Li Voti P, Bologna M, and Berardelli A. Short-term and long-term plasticity interaction in human primary motor cortex. Eur J Neurosci 33: 1908-1915, 2011.
    Kern DS, and Kumar R. Deep brain stimulation. Neurologist 13: 237-252, 2007.
    Khedr EM, Farweez HM, and Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson's disease patients. Eur J Neurol 10: 567-572, 2003.
    Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Foly N, and Hamdy A. Dopamine levels after repetitive transcranial magnetic stimulation of motor cortex in patients with Parkinson's disease: preliminary results. Mov Disord 22: 1046-1050, 2007.
    Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, and Hamdy A. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson's disease. Mov Disord 21: 2201-2205, 2006.
    Kishore A, Joseph T, Velayudhan B, Popa T, and Meunier S. Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de novo Parkinson's disease. Clin Neurophysiol 2011.
    Klein A, Wessolleck J, Papazoglou A, Metz GA, and Nikkhah G. Walking pattern analysis after unilateral 6-OHDA lesion and transplantation of foetal dopaminergic progenitor cells in rats. Behav Brain Res 199: 317-325, 2009.
    Kobayashi M, and Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol 2: 145-156, 2003.
    Lee HM, Chen JJ, Ju MS, Lin CC, and Poon PP. Validation of portable muscle tone measurement device for quantifying velocity-dependent properties in elbow spasticity. J Electromyogr Kinesiol 14: 577-589, 2004.
    Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116: 244-253, 2005.
    Lefaucheur JP, Drouot X, Von Raison F, Menard-Lefaucheur I, Cesaro P, and Nguyen JP. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson's disease. Clin Neurophysiol 115: 2530-2541, 2004.
    Lieber RL, Steinman S, Barash IA, and Chambers H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve 29: 615-627, 2004.
    Lindner MD, Plone MA, Francis JM, Blaney TJ, Salamone JD, and Emerich DF. Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behav Brain Res 86: 25-40, 1997.
    Lindner MD, Plone MA, Francis JM, and Emerich DF. Validation of a rodent model of Parkinson's Disease: evidence of a therapeutic window for oral Sinemet. Brain Res Bull 39: 367-372, 1996.
    Luft AR, Kaelin-Lang A, Hauser TK, Cohen LG, Thakor NV, and Hanley DF. Transcranial magnetic stimulation in the rat. Exp Brain Res 140: 112-121, 2001.
    Mabrouk OS, Marti M, Salvadori S, and Morari M. The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience 164: 360-369, 2009.
    Mabrouk OS, Volta M, Marti M, and Morari M. Stimulation of delta opioid receptors located in substantia nigra reticulata but not globus pallidus or striatum restores motor activity in 6-hydroxydopamine lesioned rats: new insights into the role of delta receptors in parkinsonism. J Neurochem 107: 1647-1659, 2008.
    Maeda F, Keenan JP, Tormos JM, Topka H, and Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111: 800-805, 2000.
    Marin C, Aguilar E, Mengod G, Cortes R, and Obeso JA. Effects of early vs. late initiation of levodopa treatment in hemiparkinsonian rats. Eur J Neurosci 30: 823-832, 2009.
    Metz GA, Tse A, Ballermann M, Smith LK, and Fouad K. The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis. Eur J Neurosci 22: 735-744, 2005.
    Miklyaeva EI, Martens DJ, and Whishaw IQ. Impairments and compensatory adjustments in spontaneous movement after unilateral dopamine depletion in rats. Brain Res 681: 23-40, 1995.
    Muir GD, and Whishaw IQ. Ground reaction forces in locomoting hemi-parkinsonian rats: a definitive test for impairments and compensations. Exp Brain Res 126: 307-314, 1999.
    Nandi D, Liu X, Winter JL, Aziz TZ, and Stein JF. Deep brain stimulation of the pedunculopontine region in the normal non-human primate. J Clin Neurosci 9: 170-174, 2002.
    Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Fieuws S, and Broens-Kaucsik E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease. Mov Disord 16: 1066-1075, 2001.
    Okabe S, Ugawa Y, and Kanazawa I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson's disease. Mov Disord 18: 382-388, 2003.
    Olsson M, Nikkhah G, Bentlage C, and Bjorklund A. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15: 3863-3875, 1995.
    Paille V, Henry V, Lescaudron L, Brachet P, and Damier P. Rat model of Parkinson's disease with bilateral motor abnormalities, reversible with levodopa, and dyskinesias. Mov Disord 22: 533-539, 2007.
    Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, and Catala MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15: 333-343, 1998.
    Pascual-Leone A, Valls-Sole J, Wassermann EM, and Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117 ( Pt 4): 847-858, 1994.
    Paulus W. Toward establishing a therapeutic window for rTMS by theta burst stimulation. Neuron 45: 181-183, 2005.
    Paxinos G, and Watson C. The rat brain in stereotaxic coordinates. Amsterdam: Elsevier Academic Press, 2005, p. xliii, 162 p.
    Pereira JE, Cabrita AM, Filipe VM, Bulas-Cruz J, Couto PA, Melo-Pinto P, Costa LM, Geuna S, Mauricio AC, and Varejao AS. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats. Behav Brain Res 172: 212-218, 2006.
    Prentice SD, and Drew T. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J Neurophysiol 85: 679-698, 2001.
    Prochazka A, Bennett DJ, Stephens MJ, Patrick SK, Sears-Duru R, Roberts T, and Jhamandas JH. Measurement of rigidity in Parkinson's disease. Mov Disord 12: 24-32, 1997.
    Rascol O, Sabatini U, Brefel C, Fabre N, Rai S, Senard JM, Celsis P, Viallard G, Montastruc JL, and Chollet F. Cortical motor overactivation in parkinsonian patients with L-dopa-induced peak-dose dyskinesia. Brain 121 ( Pt 3): 527-533, 1998.
    Rauch F, Schwabe K, and Krauss JK. Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav Brain Res 210: 46-53, 2010.
    Reynolds JL, Urbanchek MS, Asato H, and Kuzon WM, Jr. Deletion of individual muscles alters rat walking-track parameters. J Reconstr Microsurg 12: 461-466, 1996.
    Reza MF, Ikoma K, Chuma T, and Mano Y. Mechanomyographic response to transcranial magnetic stimulation from biceps brachii and during transcutaneous electrical nerve stimulation on extensor carpi radialis. J Neurosci Methods 149: 164-171, 2005.
    Rogers MW. Disorders of posture, balance, and gait in Parkinson's disease. Clin Geriatr Med 12: 825-845, 1996.
    Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, Lopez-Vales R, Pascual-Leone A, and Jensen F. Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol 121: 104-108, 2010.
    Rothkegel H, Sommer M, Rammsayer T, Trenkwalder C, and Paulus W. Training effects outweigh effects of single-session conventional rTMS and theta burst stimulation in PD patients. Neurorehabil Neural Repair 23: 373-381, 2009.
    Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, and Rascol O. Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123 ( Pt 2): 394-403, 2000.
    Schallert T, Fleming SM, Leasure JL, Tillerson JL, and Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39: 777-787, 2000.
    Schneider JS, and Peacock V. Differential effects of GDNF treatment on rotational asymmetry, skilled forelimb use deficits and sensory neglect in unilateral 6-OHDA-lesioned rats. Restor Neurol Neurosci 13: 205-212, 1998.
    Siebner HR, Mentschel C, Auer C, Lehner C, and Conrad B. Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson's disease. Neurosci Lett 284: 147-150, 2000.
    Siebner HR, and Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148: 1-16, 2003.
    Sommer M, and Paulus W. Pulse configuration and rTMS efficacy: a review of clinical studies. Suppl Clin Neurophysiol 56: 33-41, 2003.
    Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, and Mazzone P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 130: 1596-1607, 2007.
    Steiner H, and Kitai ST. Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur J Neurosci 14: 1390-1404, 2001.
    Suppa A, Marsili L, Belvisi D, Conte A, Iezzi E, Modugno N, Fabbrini G, and Berardelli A. Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease. Exp Neurol 227: 296-301, 2011.
    Thobois S, Guillouet S, and Broussolle E. Contributions of PET and SPECT to the understanding of the pathophysiology of Parkinson's disease. Neurophysiol Clin 31: 321-340, 2001.
    Touge T, Gerschlager W, Brown P, and Rothwell JC. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112: 2138-2145, 2001.
    Tremblay F, and Tremblay LE. Cortico-motor excitability of the lower limb motor representation: a comparative study in Parkinson's disease and healthy controls. Clin Neurophysiol 113: 2006-2012, 2002.
    Truong L, Allbutt H, Kassiou M, and Henderson JM. Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 169: 1-9, 2006.
    Tsai YF, Tsai HW, Tai MY, and Lu KS. Age-related changes in locomotor behavior induced by MPTP in rats. Neurosci Lett 129: 153-155, 1991.
    Tsuji S, and Akamatsu N. Does transcranial magnetic stimulation improve the motor symptoms of Parkinson disease? J Neurol 250 Suppl 3: III47-50, 2003.
    Vahabzadeh-Hagh AM, Muller PA, Pascual-Leone A, Jensen FE, and Rotenberg A. Measures of cortical inhibition by paired-pulse transcranial magnetic stimulation in anesthetized rats. J Neurophysiol 105: 615-624, 2011.
    Varejao AS, Cabrita AM, Patricio JA, Bulas-Cruz J, Gabriel RC, Melo-Pinto P, Couto PA, and Meek MF. Functional assessment of peripheral nerve recovery in the rat: gait kinematics. Microsurgery 21: 383-388, 2001a.
    Varejao AS, Meek MF, Ferreira AJ, Patricio JA, and Cabrita AM. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 108: 1-9, 2001b.
    Vlamings R, Visser-Vandewalle V, Koopmans G, Joosten EA, Kozan R, Kaplan S, Steinbusch HW, and Temel Y. High frequency stimulation of the subthalamic nucleus improves speed of locomotion but impairs forelimb movement in Parkinsonian rats. Neuroscience 148: 815-823, 2007.
    Wang H, Wang X, and Scheich H. LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. Neuroreport 7: 521-525, 1996.
    Wang Y, Bontempi B, Hong SM, Mehta K, Weinstein PR, Abrams GM, and Liu J. A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats. J Cereb Blood Flow Metab 28: 1936-1950, 2008.
    Wichmann T, and DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6: 751-758, 1996.
    Wu AD, Fregni F, Simon DK, Deblieck C, and Pascual-Leone A. Noninvasive brain stimulation for Parkinson's disease and dystonia. Neurotherapeutics 5: 345-361, 2008.
    Wu YN, Chen JJ, Zhang LQ, and Hyland BI. Regulation of hind-limb tone by adenosine A2A receptor in rats. Neuroscience 159: 1408-1413, 2009.
    Wu YN, Hyland BI, and Chen JJ. Biomechanical and electromyogram characterization of neuroleptic-induced rigidity in the rat. Neuroscience 147: 183-196, 2007.
    Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, Kim SE, Lee HH, Kim YP, and Kim CJ. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats. Neurosci Lett 423: 12-17, 2007.
    Yu P, Matloub HS, Sanger JR, and Narini P. Gait analysis in rats with peripheral nerve injury. Muscle & nerve 24: 231-239, 2001.
    Ziemann U, Rothwell JC, and Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496 ( Pt 3): 873-881, 1996.

    下載圖示 校內:2014-01-06公開
    校外:2015-01-06公開
    QR CODE