| 研究生: |
林士家 Lin, Shih-Chia |
|---|---|
| 論文名稱: |
衝擊冷卻下旋轉柱狀型散熱器的最佳化 Optimization of impingement cooling for a rotating pin-fin heat sink |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 衝擊冷卻、旋轉鰭片散熱器、紊流、最佳化、反應曲面法、全因子法、基因演算法 |
| 外文關鍵詞: | impingement cooling, rotating pin-fins heat sink, turbulent flow, optimum, response surface methodology, full factorial experimental design, genetic algorithm method |
| 相關次數: | 點閱:107 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以數值模擬衝擊噴流冷卻下靜止與旋轉鰭片散熱器的流場與熱傳特性。文中選用5x5的方型柱狀鰭片散熱器來進行模擬,且工作流體為空氣。紊流統御方程式是應用有限體積法配合四種根據雷諾平均Navier-Stokes近似的紊流模式來求解,在本文所研究的範圍內,標準k-epsilon紊流模式在整體性能表現較好。
往後的數值計算都使用標準k-epsilon模型,其研究參數包含:相對的衝擊高度(C/d)、相對的鰭片寬度(w/d)、相對的鰭片高度(Hf/d)、雷諾數(Re)和旋轉雷諾數(Rer),其研究探討的範圍為0<C/d<11、0.31<w/d<0.77、1.54<Hf/d<3.08、5019<Re<25096和3478<Rer<8114,且所發展的理論計算結果並與文獻上的實驗數據作驗證。
文中將計算衝擊高度(C/d)、雷諾數(Re)和旋轉雷諾數(Rer)對靜止與旋轉鰭片散熱器系統之平均紐賽數(Nu)的影響,且與實驗比對得到一致的結果,文中也提供平均紐賽數(Nu)的經驗公式。具衝擊噴流的旋轉鰭片散熱器方面,文中探討Rer對平均紐賽數(Nu)的影響,其計算結果顯示當Re較小(Re=5019)時,熱傳增益有明顯的提升,但當Re增加,其熱傳增益則會下降。
此外,在數值驗證後,文中並利用反應曲面法(response surface methodology)、全因子法(full factorial experimental design)和基因演算法(genetic algorithm method)來探討本問題的最佳化。對於靜止與旋轉鰭片散熱器,其最佳化設計的結果是在C/d=0、w/d=0.77和Hf/d=3.08。
In this study, the fluid flow and heat transfer characteristics of jet impingement onto the stationary and rotating heat sink have been investigated numerically. The square heat sinks with uniformly in-line arranged of 5x5 pin-fins are employed and the impinging coolant is air. The turbulent governing equations are solved using finite volume method by employing four turbulence models based on Reynolds-averaged Navier-Stokes(RANS) approach. Overall performance of standard k-epsilon models is better in comparing with other models in the studied ranges.
Subsequent numerical computations are performed with standard k-epsilon models for the parameters studied relative distance of nozzle to fin tip(C/d), relative width of the fin(w/d), relative height of the pin-fins(Hf/d), Reynolds number(Re) and rotational Reynolds number(Rer) in the ranges of 0<C/d<11, 0.31<w/d<0.77, 1.54<Hf/d<3.08, 5019<Re<25096 and 3478<Rer<8114 respectively. The theoretical model developed is validated by comparing with the available experimental data in the literature.
The effects of C/d, Re and Rer on the average Nusselt number(Nu) for the stationary and rotating heat sink system are in good agreement with the available data and the correlation equations of average Nusselt number(Nu) are also provided. The effects of Rer on the average Nusselt number(Nu) of a rotating heat sink with jet impingement, the results demonstrate that the heat transfer enhancement( is obvious in the case of smaller Re(Re=5019), but decreased with increasing Re.
In addition, after the validation of the numerical results, the optimization of this problem is also presented by using response surface methodology(RSM), full factorial experimental design and genetic algorithm(GA) method. Based on the results derived by the optimization, the optimum condition is in C/d=0, w/d=0.77 and Hf/d=3.08 for stationary and rotating pin-fins heat sink.
[1]Agarwal P.K., Bower W.W., “Navier-Stokes Computations of Turbulent Compressible Two-Dimensional Impinging Jet Flowfields,” AIAA Journal, Vol. 20, pp.577-584, 1982.
[2]Maveety J.G., Hendricks J.F., “A Heat Sink Performance Study Considering Material, Geometry, Nozzle Placement, and Reynolds Number with Air Impingement,” Journal of Electronic Materials , Vol. 121, pp.156–161, 1999.
[3]Shi Yuling, Ray M.B., Mujumdar A.S., “Computational Study of Impingement Heat Transfer under a Turbulent Slot Jet,” Industrial and Engineering Chemistry Research, Vol. 41, pp.4643-4651, 2002.
[4]Sathe S.B., Sammakia B.G., “An Analytical Study of the Optimized Performance of an Impingement Heat Sink,” Journal of Electronic Packaging, Vol.126, pp.528–534, 2004.
[5]Wang S.J., Mujumdar A.S, “A Comparative Study of Five Low Reynolds Number Models for Impingement Heat Transfer,” Applied Thermal Engineering, Vol. 25, pp.31-44, 2005.
[6]Li H.Y., Chen K.Y., “Thermal-Fluid Characteristics of Pin-Fin Heat Sinks Cooled by Impinging Jet,” Journal of Enhanced Heat Transfer, Vol. 12, pp.189-201, 2005.
[7]Chiang K.T, Chang F.P., “Application of Response Surface Methodology in the Parametric Optimization of Pin-Fin Type Heat Sink,” International Communications in Heat and Mass Transfer, Vol. 33,pp.836-845, 2006.
[8]Yang Y. T., Peng H. S., “Numerical Study of Pin-Fin Heat Sink with Un-Uniform Fin Height Design,” International Journal of Heat and Mass Transfer, Vol. 51, pp.4788-4796, 2008.
[9]Chen C.T., Wu C.K., Hwang C., “Optimal Design and Control of CPU Heat Sink Processes,” IEEE Transactions on Components and Packaging Technologies, Vol. 31, pp.184-195, 2008.
[10]Zu Y.Q., Yan Y.Y., “Numerical Study on Stagnation Point Heat Transfer by Jet Impingement in a Confined Narrow Gap,” Transactions of the ASME, Vol. 131/094504-1, 2009.
[11]Sharif M.A.R., Mothe K.K., “Evaluation of Turbulence Models in the Prediction of Heat Transfer Due to Slot Jet Impingement on Plane and Concave Surfaces,” Numerical Heat Transfer, Part B: Fundamentals, Vol. 55, pp.273-294, 2009.
[12]Brodersen S., Metzger D.E., Fernando H.J., “Flow Generated by the Impingement of a Jet on a Rotating Surface: Part Ⅰ-Basic Flow Patterns,” Journal of Fluids Engineering, Vol. 118, pp.61-67, 1996.
[13]Brodersen S., Metzger D.E., Fernando H.J., “Flow Generated by the Impingement of a Jet on a Rotating Surface: Part Ⅱ-Detailed Flow Structure and Analysis,” Journal of Fluids Engineering, Vol. 118, pp.61-67, 1996.
[14]Benim A.C., Ozkan K., Cagan M., “Computational Investigation of Turbulent Jet Impinging onto Rotating Disk,” International Journal of Numerical Methods for Heat and Fluid Flow, Vol.17, pp.284-301, 2007.
[15]Jorge C.L., Muhammad M.R., Ashok K., “Numerical Analysis of Heat Transfer on a Rotating Disk Surface under Confined Liquid Jet Impingement,” International Journal of Heat and Fluid Flow, Vol. 28, pp.720-734, 2007.
[16]Jeng T.M., Tzeng S.C., Liao H.R., “Flow Visualization and Heat Transfer Measurements for a Rotating Pin-Fin Heat Sink with a Circular Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 52, pp.2119-2131, 2009.
[17]Launder B.E., Spalding D.B., “The Numerical Computation of Turbulent Flow,” Computer Method in Applied Mechanics and Engineering, Vol. 3, pp.269-289, 1974.
[18]Yakhot V., Orszag S.A., “Renormalization Group Analysis of Turbulence,” Journal of Scientific Computing, Vol. 1, pp.3-51, 1986.
[19]Shih T.-H., Liou W.W., Shabbir A., Yang Z., Zhu J., “A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation,” Computers Fluids, Vol. 24, pp.227-238, 1995.
[20]Lien F.S., Leschziner M.A., “Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure,” Computers and Fluids, Vol. 23, pp.983-1004, 1994.
[21]Speziale C.G., Sarkar S., Gatski T. B., “Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,” Journal of Fluid Mechanics, Vol. 227,pp.245-272, 1991.
[22]Serag-Eldin M. A., Spalding D. B., “Computation of Three-Dimensional Gas Turbine Combustion Chamber,” ASME Journal of Engineering for Power, Vol. 101, pp.327-336, 1979.
[23]Jayatilleke C., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer,” Prog. Heat Mass Transfer, Vol. 1, pp.193-321, 1969.
[24]Kim S.-E., Choudhury D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient,” Separated and Complex Flow, ASME FED Vol. 217, 1995.
[25]Thompson J.F., Thames F.C., Mastin C.W., “Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies,” Journal of Computational Physics, Vol. 15, pp.299-319, 1974.
[26]Thomas P.D., “Composite Three-Dimensional Grids Generated by Elliptic System,” AIAA Journal, Vol. 20, pp.1195-1202, 1982.
[27]Yang, C.H., Computational Fluid Dynamics Study of Lower Urinary Tract System Based on Medical Imaging Technology, Master Thesis, National Tsing Hua University, Taiwan, 2002.
[28]Wu B.X., Gebremedhin K.G., “Numerical Simulation Flow Field around a Cow Using 3-D Body-Fitted Coordinate System,” Journal of Thermal Biology, Vol. 26, pp.563-573, 2001.
[29]Patankar S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[30]Versteeg H.K., Malalasekera W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Longman, London, 1995.
[31]Tannehill J.C., Anderson D.A., Pletcher R.H., Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, Levittown, 1997.
[32]Ferziger J.H., Peric M., Computational Methods for Fluid Flow, Springer Verlag, New York, 2002.
[33]Chung T.J., Computational Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2002.
[34]Bagley J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International, Vol. 28, 1967.
[35]De Jong K.A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, No. 76~9381, 1975.
[36]Goldberg D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
[37]Davis L.D., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
[38]Koza J.R., “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
[39]葉怡成, 高等實驗計算法(Advanced Design of Experiments),五南圖書公司, 2009.
[40]周明, 孫樹棟, 遺傳算法原理及應用(Genetic Algorithms: theory and applications), 國防工業出版社, 1999.