| 研究生: |
劉如芳 Liu, Ju-Fang |
|---|---|
| 論文名稱: |
一段DPP IV 胜肽結合到轉移性癌細胞表面上之Fibronectin Matrix 的後果 Consequences after a DPP IV Peptide Binds to The Fibronectin Matrix on Metastatic Cancer Cell Surfaces |
| 指導教授: |
鄭宏祺
Cheng, Hung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 第四型雙肽蛋白水解酶 、纖連蛋白 、癌症轉移 |
| 外文關鍵詞: | Fibronectin, FN, Dipeptidyl peptidase IV, DPP IV |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阻止癌症轉移被列入治療癌症中重要的一環。過去,我們發現懸浮癌細胞表面組裝之Fibronectin (FN) matrix與肺臟微血管內皮細胞上Dipeptidyl peptidase IV (DPP IV)的結合在癌症轉移過程中扮演重要角色。藉由阻斷FN與DPP IV的結合或許是一種抑制癌症轉移的理想策略。基於此理由,我們定位出一段可與FN結合的DPP IV片段,DP4A,其二者結合的Kd (解離常數)為0.0267μM。雖然透過細胞黏著實驗確實發現DP4A對FN/DPP IV結合有很好的抑制作用,不過在in vivo,我們卻無法觀察到轉移有被抑制的現象。究其原因,發現只要在培養液中移除未與癌細胞結合的DP4A,細胞黏著的抑制現象就會消失。探討DP4A抑制能力消失的原因,源於癌細胞表面組裝之纖連蛋白基質與DP4A結合後會持續將DP4A吞噬並降解。文獻指出細胞表面之FN也有被吞噬降解的現象,或許DP4A結合上FN後一起被吞噬。此假設經由螢光染色共位標定兩者獲得證實。另一方面,我們觀察到吞噬後的FN與細胞內之EEA-1及LAMP-1共位,更進一步確認FN/DP4A被吞噬後走向lysosomal degradation途徑。由於我們的目的是利用DP4A作為抑制轉移的策略,因此阻斷吞噬與降解來保留DP4A仍在細胞表面上維持與FN基質的結合便成首要目標。一方面,從老鼠尾靜脈打入大量DP4A及乳癌細胞 (4T1),使血液充滿DP4A以提供癌細胞表面之FN做結合,果然有明顯抑制小鼠癌細胞轉移的效果。我們將癌細胞施予DP4A,觀察其對細胞生長並無影響,更加確定DP4A並非藉由抑制細胞生長影響癌症轉移的能力。另一方面,單獨施予癌細胞PAO (吞噬抑制劑)及NH4Cl(降解抑制劑)並不影響其轉移能力,但能使更多DP4A留在細胞表面。未來計劃利用此二抑制劑阻斷吞噬與降解作用來達成DP4A抑制癌細胞轉移的目的。綜合以上成功的結果,DP4A可望被發展成為一種理想的抗癌症轉移藥物。
Metastatic inhibition is one of important strategies in cancer therapy. We found that cancer cell surface-associated (CSA) fibronectin (FN) mediates lung-specific cancer metastasis via interaction with lung endothelial Dipeptidyl peptidase IV (DPP IV). Identification of the FN-binding domain in DPP IV may help develop anti-adhesive metastasis-inhibiting drugs. For that purpose, we have located the FN-binding site in the N-terminal region of DPP IV and generated a recombinant peptide representing this site as DP4A. The Kd of DP4A for FN-binding was ~0.0267μM. While DP4A inhibited in vitro DPP IV/FN-mediated adhesion, no in vivo anti-metastatic effect was observed. Tremendous dilution of the free DP4A in the circulation may explain the failure of our in vivo data, in that DP4A lost its inhibitory effect once deprived of the free DP4A during the adhesion assay. We further demonstrated that the CSA FN-bound DP4A was soon endocytosed and degraded by cancer cells. Therefore, continuously provide free-DP4A may maintain its persistent cell surface-presence and the inhibitory effect. Next we examined the molecular mechanism of this endocytotic phenomenon with immunofluorescence staining and colocalization techniques and found that DP4A was endocytosed together with CSA FN, which has been reported to be endocytosed after binding to its cell surface receptor. Moreover, the endocytotic FN/DP4Acomplex was shown to be colocalized with the early endosome and lysosomal markers EEA-1and LAMP-1, respectively. Our results provide the evidence for the lysosomal degradation of endocytosed FN and DP4A. To improve the inhibitory effect of DP4A on cancer metastasis, we significantly increased the injected DP4A concentration, to which the adhesion inhibitory effect could be well maintained. Expectedly, the metastasis of cancer cells in the lungs was thus greatly inhibited. This metastatic inhibition was apparently not due to cell growth arrest. An alternative approach was attempted in which we blocked the endocytotic protein degradation by treating cancer cells with PAO (endocytosis inhibitor) or NH4Cl (degradation inhibitor). We first showed that these two inhibitors were able to keep the DP4A still bound to FN on cell surfaces from being endocytosed. We are currently testing these inhibitors in the in vivo metastasis assay to see whether they are able to enhance the inhibitory effect of DP4A on lung metastasis without providing excess free DP4A. Altogether, we provide a novel and potent anti-adhesive strategy in cancer metastasis prevention employing a FN-binding peptide of DPP IV in inhibiting the FN/DPP IV-mediated cancer metastasis.
1.Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 6;118(3):277-9.
2.Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature, 1980. 10;283(5743):139-46.
3.Fidler, I. J. The organ microenvironment and cancer metastasis. Differentiation, 2002. 70, 498–505.
4.Wyckoff, J. B., Jones, J. G., Condeelis, J. S. and Segall, J. E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res, 2000. 1;60(9):2504-11.
5.Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. Jan;2(1):38-47.
6.Ichikawa Y, Ishikawa T, Tanaka K, Togo S, Shimada H. Extracellular matrix degradation enzymes: important factors in liver metastasis of colorectal cancer and good targets for anticancer metastatic therapy. Nippon Geka Gakkai Zasshi, 2001.102(5):376-80.
7.Stagg J, Johnstone RW, Smyth MJ. From cancer immunosurveillance to cancer immunotherapy. Immunol Rev, 2007. 220:82-101.
8.Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2002. 2(8):584-93.
9.Paget, S. The distribution of secondary growths in cancer of the breast. Lancet, 1889. 1, 571–573.
10.Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science, 1977. 26;197(4306):893-5.
11.Honn KV, Tang DG. Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev, 1992. 11(3-4):353-75.
12.Rice GE, Bevilacqua MP. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science, 1989. 8;246(4935):1303-6.
13.St John T, Meyer J, Idzerda R, Gallatin WM. Expression of CD44 confers a new adhesive phenotype on transfected cells. Cell, 1990. 12;60(1):45-52.
14.Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science, 1986. 25;233(4762):467-70.
15.Liotta L. Tumor invasion and metastases role of the extracellular matrix. Cancer Res, 1991. 46: 1–7.
16.Johnson RC, Augustin-Voss HG, Zhu DZ, Pauli BU. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer Res, 1991. 1;51(1):394-9.
17.Johnson RC, Zhu D, Augustin-Voss HG, Pauli BU. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. J Cell Biol, 1993. 121(6):1423-32.
18.Piazza GA, Callanan HM, Mowery J, Hixson DC. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem J, 1989. 15;262(1):327-34.
19.Cheng HC, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem, 1998. 11;273(37):24207-15..
20.Hartel S, Gossrau R, Hanski C, Reutter W. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry, 1988. 89(2):151-61.
21.McCaughan GW, Wickson JE, Creswick PF, Gorrell MD. Identification of the bile canalicular cell surface molecule GP110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology, 1990. 11(4):534-44.
22.Bühling F, Kunz D, Reinhold D, Ulmer AJ, Ernst M, Flad HD, Ansorge S. Expression and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. Nat Immun, 1994. 13(5):270-9.
23.Rawlings ND, Tolle DP, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res, 2004. 1;32(Database issue):D160-4.
24.Rosenblum JS, Kozarich JW. Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol, 2003. 7(4):496-504.
25.Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, Huber R, Bode W, Demuth HU, Brandstetter H. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A, 2003. 29;100(9):5063-8..
26.Ajami K, Abbott CA, Obradovic M, Gysbers V, Kähne T, McCaughan GW, Gorrell MD. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry, 2003. 28;42(3):694-701.
27.Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond), 2005. 108(4):277-92.
28.Cunningham, D.F., and O’Connor, B. Proline specific peptidases. Biochim. Biophys. Acta, 1997. 1343 160–186.
29.Lambeir AM, Durinx C, Proost P, Van Damme J, Scharpé S, De Meester I. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett, 2002. 13;512(1-3):353.
30.Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, Ribel U, Watanabe T, Drucker DJ, Wagtmann N. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A, 2000. 6;97(12):6874-9.
31.Salvatore T, Carbonara O, Cozzolino D, Torella R, Sasso FC. Progress in the oral treatment of type 2 diabetes: update on DPP-IV inhibitors. Curr Diabetes Rev, 2009. 5(2):92-101.
32.Aytac U, Dang NH. CD26/dipeptidyl peptidase IV: a regulator of immune function and a potential molecular target for therapy. Curr Drug Targets Immune Endocr Metabol Disord, 2004. 4(1):11-8.
33.Hanski C, Huhle T, Gossrau R, Reutter W. Direct evidence for the binding of rat liver DPP IV to collagen in vitro. Exp Cell Res, 1988. 178(1):64-72.
34.Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol, 2001. 54(3):249-64.
35.von Bonin A, Hühn J, Fleischer B. Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev, 1998. 161:43-53.
36.Pacheco R, Martinez-Navio JM, Lejeune M, Climent N, Oliva H, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci U S A, 2005. 5;102(27):9583-8.
37.Wesley UV, Albino AP, Tiwari S, Houghton AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med, 1999. 2;190(3):301-6.
38.Lloyd C. Fibronectin: a function at the junction. Nature, 1979. 7;279(5713):473-4.
39.Virtanen I, Vartio T, Badley RA, Lehto VP. Fibronectin in adhesion, spreading and cytoskeletal organization of cultured fibroblasts. Nature, 1982. 12;298(5875):660-3.
40.Marrink J, vd Geest S, Sinnema R, Vellenga E, de Vries EG. Fibronectin-complex (FN-C) present in normal plasma. Thromb Res, 1985. 15;37(6):689-92.
41.Wierzbicka-Patynowski I, Schwarzbauer JE. The ins and outs of fibronectin matrix assembly. J Cell Sci, 2003. 15;116(Pt 16):3269-76.
42.Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem, 1988. 57:375-413.
43.Abe Y, Bui-Thanh NA, Ballantyne CM, Burns AR. Extra domain A and type III connecting segment of fibronectin in assembly and cleavage. Biochem Biophys Res Commun, 2005. 23;338(3):1640-7.
44.Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J, 1999. 15;18(6):1468-79.
45.Han S, Khuri FR, Roman J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res, 2006. 1;66(1):315-23.
46.Wernert N. The multiple roles of tumour stroma. Virchows Arch, 1997. 430(6):433-43.
47.Pupa SM, Ménard S, Forti S, Tagliabue E. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol, 2002. 192(3):259-67.
48.Cheng HC, Abdel-Ghany M, Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem, 2003. 4;278(27):24600-7.
49.Saka Y, Smith JC. A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus. BMC Dev Biol, 2007. 16;7:47.
50.Ohashi T, Kiehart DP, Erickson HP. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci U S A, 1999. 2;96(5):2153-8.
51.Moral Z, Dong K, Wei Y, Sterling H, Deng H, Ali S, Gu R, Huang XY, Hebert SC, Giebisch G, Wang WH. Regulation of ROMK1 channels by protein-tyrosine kinase and -tyrosine phosphatase. J Biol Chem, 2001. 9;276(10):7156-63.
52.Cavet ME, Akhter S, Murtazina R, Sanchez de Medina F, Tse CM, Donowitz M. Half-lives of plasma membrane Na(+)/H(+) exchangers NHE1-3: plasma membrane NHE2 has a rapid rate of degradation. Am J Physiol Cell Physiol, 2001.81(6):C2039-48.
53.Clark, R.A.F. Wound repair. Overview and general considerations. In: Clark RAF, ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press, 1996:3-50.
54.McKeown-Longo PJ, Hanning R, Mosher DF. Binding and degradation of platelet thrombospondin by cultured fibroblasts. J Cell Biol, 1984. 98(1):22-8.
55.Murphy-Ullrich JE, Mosher DF. Interactions of thrombospondin with endothelial cells: receptor-mediated binding and degradation. J Cell Biol, 1987. 105(4):1603-11.
56.Pijuan-Thompson V, Gladson CL. Ligation of integrin alpha5beta1 is required for internalization of vitronectin by integrin alphavbeta3. J Biol Chem, 1997. 31;272(5):2736-43.
57.Sottile J, Chandler J. Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol Biol Cell, 2005. 16(2):757-68.
58.Bretscher MS. Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J, 1989. 8, 1341-1348.
59.Proux-Gillardeaux V, Gavard J, Irinopoulou T, Mège RM, Galli T. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proc Natl Acad Sci U S A, 2005. 3;102(18):6362-7.
60.Shi F, Sottile J. Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci, 2008. 15;121(Pt 14):2360-71.
61.Chow CW, Khurana S, Woodside M, Grinstein S, Orlowski J. The epithelial Na(+)/H(+) exchanger, NHE3, is internalized through a clathrin-mediated pathway. J Biol Chem, 1999. 31;274(53):37551-8.
62.Szaszi K, Paulsen A, Szabo EZ, Numata M, Grinstein S, Orlowski J. Clathrin-mediated endocytosis and recycling of the neuron-specific Na+/H+ exchanger NHE5 isoform. Regulation by phosphatidylinositol 3'-kinase and the actin cytoskeleton. J Biol Chem, 2002. 8;277(45):42623-32.
63.Ceresa BP, Schmid SL. Regulation of signal transduction by endocytosis. Curr Opin Cell Biol, 2000. 12(2):204-10.
64.Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol, 2005. 6(2):112-26.
65.Marchetti M, Monier MN, Fradagrada A, Mitchell K, Baychelier F, Eid P, Johannes L, Lamaze C. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol Biol Cell, 2006. 17(7):2896-909.
66.Burrous BA, Wolf G. The kinetics of fibronectin synthesis and release in normal and tumor promoter-treated human lung fibroblasts. Mol Cell Biochem, 1990. 17;96(1):57-67.
67.Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3):161-71.
68.Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004. 22(8):959-60.
69.Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol, 2007. 2(1):47-52. .
70.Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol, 2005. 23(11):1418-23. .
71.Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release, 2003. 28;91(1-2):103-13.
72.Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nanomed, 2007. 2 (5):739-43.
73.洪婷婷 (2007)。定位大鼠第四型雙肽蛋白水解酶其細胞外區域中之纖連蛋白基質及單株抗體6A3的結合位點。國立成功大學碩士論文。
74.王毓瑄 (2007)。辨認纖連蛋白胺基端區域中與第四型雙胜肽水解酶的結合位點。國立成功大學碩士論文。
75.黃浚憲 (2008)。第二型鈉氫離子交換蛋白對於懸浮癌細胞表面纖連蛋白基質組裝之角色扮演。國立成功大學碩士論文。
校內:2034-06-12公開