| 研究生: |
楊登凱 Yang, Teng-Kai |
|---|---|
| 論文名稱: |
含磺酸或聚醚之聚醯亞胺合成與鑑定及其於鋰離子電池黏著劑之應用 Synthesis and Characterization of Sulfonater-Contained or Polyether-Contained Polyimide Used as Binder of Lithium-Ion Batteries |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 磺酸根(SO3-) 、聚醚(PEO) 、聚醯亞胺高分子 、鋰離子電池 、黏著劑 、循環壽命 |
| 外文關鍵詞: | sulfonate(SO3-), polyether(PEO), polyimide, lithium-ion battery binder, cycle life |
| 相關次數: | 點閱:88 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以一步驟高溫聚合法以及二階段溶液環化法,分別製備含有磺酸根(SO3-)之聚醯亞胺高分子(PI-SO3)與含聚醚(EO)之聚醯亞胺高分子(PI-EO),並將上述兩種高分子作為鋰離子電池之黏著劑。PISO3與PI-EO都因具有聚醯亞胺之結構使得其熱裂解溫度(Td)皆高於275℃,其中以PI-SO3作為電池黏著劑較PI-EO有較優異之特性,在充放電的實驗中PI-SO3在0.1C即擁有153mAhg-1之電容,5C、10C、20C則分別還保有86.9%、67.3%、20.3%之電容值維持率,達到商用黏著劑之等級,甚至在20C之表現優於商用黏著劑。在長效測試方面,聚醯亞胺高分子具有穩定之結構,使其擁有良好的循環壽命,在200圈幾乎沒有衰退之跡象,且庫倫效率值皆穩定保有98%以上。
Synthesis of sulfonate-contained and polyether-contained polyimide by one-pot high temperature solution imidization and two-step solution imidization have been accomplished and characterized. These two polymers, PI-SO3 and PI-EO, are used as binder of lithium-ion batteries. From TGA analysis, we found out that PI-SO3 and PI-EO had good thermal stability up to 275℃.For battery applications, the PI-SO3 binder showed higher capacities than that of the PI-EO binder under different discharge rates. The cell specific capacity of PI-SO3 was 153mAhg-1 at 0.1C discharge rate and the capacity rentention were 86.9%, 67.3% and 20.3% at 5C, 10C and 20C discharge rate, respectively. Moreover, the capacity retention of PI-SO3 binder is higher than that of PVDF binder at 20C discharge. Both the PI-SO3 and PI-EO binders both showed good cycle life at 0.5C rate up to 200 cycles and the columbic efficiency still up to 98% due to the strong structure of imide functional group.
1. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
2. Hajek, J., French Patent, 8,10, 1949.
3. Yamaki, J.-i., et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
4. Armand, M.B., Intercalation Electrodes, in Materials for Advanced Batteries, D.W. Murphy, J. Broadhead, and B.C.H. Steele, Editors. 1980, Springer US: Boston, MA. p. 145-161.
5. Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics, 1994. 69(3): p. 212-221.
6. Meyer, W.H., Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials, 1998. 10(6): p. 439-448.
7. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194.
8. Croce, F., et al., A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid State Letters, 2002. 5(3): p. A47-A50.
9. Chung, S.-Y., J.T. Bloking, and Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002. 1(2): p. 123-128.
10. Yang, S., et al., Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides. Journal of Power Sources, 2003. 119–121: p. 239-246.
11. Mizushima, K., et al., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
12. Ohzuku, T. and A. Ueda, SOLID-STATE REDOX REACTIONS OF LICOO2 (R(3)OVER-BAR-M) FOR 4 VOLT SECONDARY LITHIUM CELLS. Journal of the Electrochemical Society, 1994. 141(11): p. 2972-2977.
13. Thomas, M.G.S.R., P.G. Bruce, and J.B. Goodenough, Lithium mobility in the layered oxide Li1−xCoO2. Solid State Ionics, 1985. 17(1): p. 13-19.
14. Bazito, F.F.C. and R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, 2006. 17: p. 627-642.
15. 呂學隆, 鋰電池正極材料技術與產業趨勢(一)-總體市場供需與發展. 2011.
16. Yi, T.F., et al., Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method. Journal of the Electrochemical Society, 2011. 158(3): p. A266-A274.
17. Wertheim, G.K., P.T.T.M. Van Attekum, and S. Basu, Electronic structure of lithium graphite. Solid State Communications, 1980. 33(11): p. 1127-1130.
18. Nalimova, V., et al., X-ray investigation of highly saturated Li-graphite intercalation compound. Carbon, 1995. 33(2): p. 177-181.
19. Jiang, J. and J.R. Dahn, Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004. 49(26): p. 4599-4604.
20. 工業技術研究院, 鋰電池材料分析發展. 2009.
21. Ratner, M.A. and D.F. Shriver, Ion transport in solvent-free polymers. Chemical Reviews, 1988. 88(1): p. 109-124.
22. Fenton, D., J. Parker, and P. Wright, Complexes of alkali metal ions with poly (ethylene oxide). polymer, 1973. 14(11): p. 589.
23. Fergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources, 2010. 195(15): p. 4554-4569.
24. Chou, S.-L., et al., Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014. 16(38): p. 20347-20359.
25. Kim, J.S., et al., Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. Journal of Power Sources, 2013. 244: p. 521-526.
26. Qian, G.N., et al., Polyimide Binder: A Facile Way to Improve Safety of Lithium Ion Batteries. Electrochimica Acta, 2016. 187: p. 113-118.
27. Guerfi, A., et al., LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources, 2007. 163(2): p. 1047-1052.
28. Tsao, C.-H., C.-H. Hsu, and P.-L. Kuo, Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery. Electrochimica Acta, 2016. 196: p. 41-47.
29. Yue, L., L. Zhang, and H. Zhong, Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. Journal of Power Sources, 2014. 247: p. 327-331.
30. Lee, J.-H., et al., Effect of Carboxymethyl Cellulose on Aqueous Processing of LiFePO4 Cathodes and Their Electrochemical Performance. Electrochemical and Solid-State Letters, 2008. 11(10): p. A175-A178.
31. Lux, S.F., et al., Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2010. 157(3): p. A320-A325.
32. Ding, N., et al., Improvement of cyclability of Si as anode for Li-ion batteries. Journal of Power Sources, 2009. 192(2): p. 644-651.
33. Doberdò, I., et al., Enabling aqueous binders for lithium battery cathodes – Carbon coating of aluminum current collector. Journal of Power Sources, 2014. 248: p. 1000-1006.
34. Liaw, D.-J., et al., Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 2012. 37(7): p. 907-974.
35. 遠東學報第二十卷第三期. 2003.
36. Sroog, C.E., et al., Aromatic polypyromellitimides from aromatic polyamic acids. Journal of Polymer Science Part A: General Papers, 1965. 3(4): p. 1373-1390.
37. Kim, Y.-H., H.-S. Kim, and S.-K. Kwon, Synthesis and Characterization of Highly Soluble and Oxygen Permeable New Polyimides Based on Twisted Biphenyl Dianhydride and Spirobifluorene Diamine. Macromolecules, 2005. 38(19): p. 7950-7956.
38. Chung, I.S. and S.Y. Kim, Soluble Polyimides from Unsymmetrical Diamine with Trifluoromethyl Pendent Group. Macromolecules, 2000. 33(9): p. 3190-3193.
39. Gunduz, N., Synthesis and characterization of sulfonated polyimides as proton exchange membranes for fuel cells. 2001, Virginia Polytechnic Institute and State University.
40. Kreuz, J.A., et al., Studies of thermal cyclizations of polyamic acids and tertiary amine salts. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966. 4(10): p. 2607-2616.
41. Zhai, Y., et al., The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. Journal of Materials Science, 2007. 43(1): p. 338-344.
42. Kailani, M.H. and C.S.P. Sung, Chemical Imidization Study by Spectroscopic Techniques. 1. Model Amic Acids. Macromolecules, 1998. 31(17): p. 5771-5778.
43. Xia, S., et al., Synthesis of soluble polyimide derived from novel naphthalene diamines for liquid crystal alignment layers and a preliminary study on the mechanism of imidization. RSC Advances, 2013. 3(34): p. 14661-14670.
44. Kim, Y.J., et al., Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions. Macromolecules, 1993. 26(6): p. 1344-1358.
45. Furukawa, N., M. Yuasa, and Y. Kimura, Structure analysis of a soluble polysiloxane-block-polyimide and kinetic analysis of the solution imidization of the relevant polyamic acid. Journal of Polymer Science Part A: Polymer Chemistry, 1998. 36(13): p. 2237-2245.
46. Kuznetsov, A.A., et al., New Alternating Copolyimides by High Temperature Synthesis in Benzoic Acid Medium. High Performance Polymers, 2004. 16(1): p. 89-100.
47. Zhai, Y., et al., The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. Journal of Materials Science, 2008. 43(1): p. 338-344.
48. Rodrigues, S., N. Munichandraiah, and K.A. Shukla, AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. Journal of Solid State Electrochemistry, 1999. 3(7): p. 397-405.
49. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
50. Bruce, P.G., Solid state electrochemistry. Vol. 5. 1997: Cambridge University Press.
51. Huang, J.-Q., et al., Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy & Environmental Science, 2014. 7(1): p. 347-353.
52. Morita, M., et al., Proceedings of the Seventh International Meeting on Lithium BatteriesCharge/discharge characteristics of polyaniline-based polymer composite positives for rechargeable lithium batteries. Journal of Power Sources, 1995. 54(2): p. 214-217.
53. Edman, L., et al., Transport Properties of the Solid Polymer Electrolyte System P(EO)nLiTFSI. The Journal of Physical Chemistry B, 2000. 104(15): p. 3476-3480.
54. Porcarelli, L., et al., Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Scientific Reports, 2016. 6: p. 19892.
55. Cheon, S.-E., et al., Structural Factors of Sulfur Cathodes with Poly(ethylene oxide) Binder for Performance of Rechargeable Lithium Sulfur Batteries. Journal of The Electrochemical Society, 2002. 149(11): p. A1437-A1441.
56. Wilkes, B.N., et al., The Electrochemical Behavior of Polyimide Binders in Li and Na Cells. Journal of The Electrochemical Society, 2016. 163(3): p. A364-A372.