| 研究生: |
盧欣妤 Lu, Hsin-Yu |
|---|---|
| 論文名稱: |
藉由奈米結構化表面引導蛋白質形成規律狀排列 Periodic Protein Assemblies Guided by Functional Nanostructured Surfaces |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 第一型膠原蛋白 、自組裝 、奈米結構表面 、奈米流體 、牛血清白蛋白 、蛋白質陣列 |
| 外文關鍵詞: | Collagen type I, self-assembly, nanostructrued srufaces, nanofluid, BSA, protein array |
| 相關次數: | 點閱:168 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Part I 中文摘要
第一型膠原蛋白(collagen type I)是細胞外間質(extracellular matrix , ECM)中含量最為豐富的蛋白質,是由三條多胜肽鏈(polypeptide chain)纏繞在一起形成具有三螺旋(triple-helix)結構的纖維(fibril),長度約有300 nm長,直徑約為1.5 nm,各次單元之間具有一暗帶間隙(D-band),約隔67 nm就會出現一次。其功能為提供細胞間生長所需要的支架之用,進而引發一系列的訊息傳遞,故常被用來研究細胞間的相互作用。由於第一型膠原蛋白通常於一般基材表面上會隨機聚集成為纖維絲團塊,甚至形成孔洞凝膠結構,故在生醫材料應用上產生諸多限制,因此本研究的目的在於結合表面化學修飾法及微奈米製程技術,將一般基材表面進行修飾,使之產生具有多種官能基及特定奈米結構的表面,而使膠原蛋白能選擇性地分布於修飾過後的基材表面上,最終形成特定的膠原蛋白微奈米結構。
於本研究中,我們利用有機矽烷自組裝薄膜(organosilane self-assembled monolayers)及多種微奈米製程技術,製作多種奈米結構化的表面,當膠原蛋白分子吸附於此類奈米結構化的表面時,會自發地進行自組裝(self-assemble)過程,形成奈米纖維絲結構,藉由原子力顯微鏡(atomic force microscopy , AFM)的高解析影像分析,我們發現多種截然不同的奈米纖維絲結構,以及膠原蛋白網狀奈米結構生成於奈米結構化的表面上,可直接藉由模板搭配第一型膠原蛋白則可得到由第一型膠原蛋白纖維組成的規律奈米結構。並成功利用所得到的第一型膠原蛋白奈米結構調控細胞,使細胞伸出許多絲狀偽足(filopodia),且會順著底下的膠原蛋白奈米結構生長。此結果證實可利用所得到的各式第一型膠原蛋白奈米結構可調控細胞行為,使細胞產生變化,未來若將此第一型膠原蛋白奈米結構做成多層,形成立體結構,即可更加模擬體內細胞所處環境,以利研究細胞外間質和細胞間的作用。
Part II 中文摘要
Particle lithography先前已被證明為一簡單、便宜、高通量(high throughput)排列蛋白質的方法,但其形成的奈米結構只能侷限於奈米環和奈米洞,並無法隨意調控出所要的奈米結構。由於流體揮發時會牽動其中的物質移動,當流體中溶劑揮發完物質即會沉積於此處,代表可以藉由流體揮發來控制物質的沉積處,因此本研究目的在於是否能利用奈米粒子與基材之間的間隙所造成的奈米流體來控制牛血清白蛋白的排列,以發展簡易方式形成各式不同的蛋白質奈米結構。
從實驗結果中,觀察到的確能藉由溶液蒸發後殘留於奈米球模板內的奈米流體和牛血清白蛋白濃度調控出四種不同的奈米結構─奈米環、奈米環間有奈米線連結、奈米環間有奈米線連接加上奈米點堆積和奈米洞,且這些奈米結構是不容易用其他方法製作出來,因此若能更加了解奈米流體的形成機制,再搭配不同的奈米模版,或許可以製作出更多不同的奈米結構。
Part I 英文摘要
Collagen is a major component of the extracellular matrix (ECM) proteins. Collagen molecules aggregate to form nanofibers with a unique triple helix structure. Collagen nanofibers provide the structural scaffold for cell attachment and further induce a series of signal cascades. Thus, collagen can serve as a model protein to study the matrix-cell interactions. Even though collagen has been used in a wide variety of applications, fibril aggregates and porous gel structures randomly formed on substrates limit the utilization of collagen in biomedical applications. The goal of this research emphasizes using nanotemplates or nanotopography with designed functionalities to regulate self-assembly of collagen nanofibrils on surfaces. Polydimethylsiloxane (PDMS) stamps with nanoline features and monodispersed silica nanoparticles serve as structural templates to guide self-assembly of collagen molecules into arrays of linear and circular collagen nanofibrils, respectively. Morphology and size of circular collagen nanofibrils change with various the protein-to-template ratio and the diameter of silica nanoparticles. In addition, we utilize organosilane self-assembled monolayers (SAMs) and the multi-scale lithographic approaches to produce various nanostructured surfaces with designed functionality and geometry. When collagen molecules adsorb on such nanostructured surfaces, spontaneous self-assembly of collagen guided by nanotopography takes place to form a variety of collagen nanostructures. Our experimental results demonstrate that a series of collagen nanostructures with various size and geometry can be successfully fabricated using nanostructure-guided assembly. We successfully use the collagen nanostructures to control filopodia of NE4C cells growing along collagen nanostructures. These promising discoveries confirm that the variety of collagen nanostructures could be used to induce filopodia formation and cell polarization.
Part II 英文摘要
Particle lithography is an easy method to pattern proteins with nanometer precision and high throughput. However, this method cannot get customized nanostructures. The goal of the research is using nanofluid formed between flat substrate and nanosphere to guide protein and form various ordered and periodic arrays of nanostructures. The results show using spatially-confined nanofluids and different concentrations of BSA can tune four distinct nanostructures: nanoring, nanoline connected with nanoring, nanoline-nanoring network with nanodot between line and ring, and nonapore. If the formation mechanism of nanofluid could be clearly understood, it would lead to fabrication of various periodic nanostructures via spatially-confined nanofluids.
Part I
1. Deok-Ho Kim, Paolo P. Provenzano, Chris L. Smith and Andre Levchenko. Matrix nanotopography as a regulator of cell function. J Cell Biol.,197(3), 351-360, 2012
2. David A. Brafman, Constructing stem cell microenvironments using bioengineering approaches. Physiological Genomics,45(23), 1123-1135, 2013
3. Felicia Ng, Shayne Boucher, Susie Koh, Konduru S. R. Sastry, Lucas Chase, Uma Lakshmipathy, Cleo Choong, Zheng Yang, Mohan C. Vemuri, Mahendra S. Rao and Vivek Tanavde, PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 112(2), 295-307, 2008
4. Jennifer S. Park, Julia S. Chu, Anchi D. Tsou, Rokhaya Diop, Zhenyu Tang, Aijun Wang and Song Li, The Effect of Matrix Stiffness on the Differentiation of Mesenchymal Stem Cells in Response to TGF-β. Biomaterials, 32(16), 3921-3930, 2011
5. Jian Tang, Rong Peng and Jiandong Ding, The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials, 31(9), 2470-2476, 2010
6. Kate Poole1, Khaled Khairy, Jens Friedrichs, Clemens Franz, David A. Cisneros, Jonathon Howard and Daniel Mueller, Molecular-scale Topographic Cues Induce the Orientation and Directional Movement of Fibroblasts on Two-dimensional Collagen Surfaces. J Mol Biol., 349(2), 380-386, 2005
7. Karl E. Kadler, Clair Baldock, Jordi Bella and Raymond P. Boot-Handford, Collagens at a glance. J Cell Sci., 120, 1955-1958, 2007
8. Sylvie Ricard-Blum and Florence Ruggiero, The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol. Biol.; 53(7), 430-442, 2005
9. Ming Fang, Elizabeth L. Goldstein, A. Simon Turner, Clifford M. Les, Bradford G. Orr, Gary J. Fisher, Kathleen B. Welch, Edward D. Rothman and Mark M. Banaszak Holl, Type I Collagen D-Spacing in Fibril Bundles of Dermis, Tendon, and Bone: Bridging between Nano- and Micro-Level Tissue Hierarchy. ACS Nano., 6(11), 9503-9514, 2012
10. Janna K. Mouw, Guanqing Ou and Valerie M. Weaver, Extracellular matrix assembly:a multiscale deconstruction. Nat Rev Mol Cell Biol., 15(12), 771-785, 2014
11. Abhijit Biswas, Ilker S. Bayer, Alexandru S. Biris, Tao Wang, Enkeleda Dervishi and Franz Faupel, Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Adv Colloid Interface Sci., 170(1-2), 2-27, 2012
12. Ki-Bum Lee, Jung-Hyurk Lim and Chad A. Mirkin, Protein Nanostructures Formed via Direct-Write Dip-Pen Nanolithography. J. AM. CHEM. SOC., 125(19), 5588-5589, 2003
13. Francesco Valle, Beatrice Chelli, Michele Bianchi, Pierpaolo Greco, Eva Bystrenova, Ilaria Tonazzini and Fabio Biscarini, Stable Non-Covalent Large Area Patterning of Inert Teflon-AF Surface: A New Approach to Multiscale Cell Guidance. Advanced Engineering Materials, 12(6), B185-191, 2010
14. Denis Gentili, Francesco Valle, Cristiano Albonetti, Fabiola Liscio and Massimiliano Cavallini, Self-Organization of Functional Materials in Confinement. Acc Chem Res., 47(8), 2692-2699, 2014
15. Ki-Bum Lee, So-Jung Park, Chad A. Mirkin, Jennifer C. Smith and Milan Mrksich, Protein nanoarrays generated by dip-pen nanolithography. Science, 295(5560), 1702-1705, 2002
16. Peter Wagner, Martin Hegner, Hans-Joachim Guentherodt and Giorgio Semenza, Formation and in Situ Modification of Monolayers Chemisorbed on Ultraflat Template-Stripped Gold Surfaces. Langmuir, 11(10), 3867–3875, 1995
17. Fengzhi Jiang, Heinrich Horber, Jonathon Howard and Daniel J. Muller, Assembly of collagen into microribbons: effects of pH and electrolyte. J Struct Biol., 148(3), 268-278, 2004.
18. David A. Cisneros, Jens Friedrichs, Anna Taubenberger, Clemens M. Franz and Daniel J. Muller, Creating Ultrathin Nanoscopic Collagen Matrices For Biological And Biotechnological Applications. Small., 3(6), 956-963, 2007
19. Richard W. Loo and M. Cynthia Goh, Potassium Ion Mediated Collagen Microfibril Assembly on Mica. Langmuir., 24(23), 13276-13278, 2008
20. Li Wang, Yan Guo, Pengcheng Li and Yonghai Song, Anion-SpecificEffects on the Assembly of Collagen Layers Mediated by Magnesium Ion on Mica Surface. J Phys Chem B., 118(2), 511-518, 2014
21. Ming Fang, Elizabeth L. Goldstein, Eryn K. Matich, Bradford G. Orr, and Mark M. Banaszak Holl, Type I Collagen Self-Assembly The Roles of Substrate and Concentration. Langmuir., 29(7), 2330-2338, 2013
22. Elzbieta Pamuła, Vinciane De Cupere, Yves F. Dufrêne and Paul G. Rouxhet, Nanoscale organization of adsorbed collagen :Influence of substrate hydrophobicity and adsorption time. J Colloid Interface Sci., 271(1), 80-91, 2004
23. I. Jacquemart, E. Pamuła, V.M. De Cupere, P.G. Rouxhet and Ch.C. Dupont-Gillain, Nanostructured collagen layers obtained by adsorption and drying. J Colloid Interface Sci., 278(1), 63-70, 2004
24. Dupont-Gillain Ch.C., Pamula E., Denis F.A., De Cupere V.M., Dufrêne Y.F. and Rouxhet P.G., Controlling the supramolecular organisation of adsorbed collagen layers. J Mater Sci Mater Med., 15(4), 347-353, 2004
25. Wee Wen Leow and Wonmuk Hwang, Epitaxially Guided Assembly of Collagen Layers on Mica Surfaces. Langmuir., 27(17), 10907-10913, 2011
26. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides and P. E. Laibinis, Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption. J. Phys. Chem. B, 102(2), 426–436, 1998
27. Frdric A. Denis, Antoine Pallandre, Bernard Nysten, Alain M. Jonas and Christine C. Dupont-Gillain, Alignment and Assembly of Adsorbed Collagen Molecules Induced by Anisotropic Chemical Nanopatterns. Small., 1(10), 984-991, 2005
28. ohn T. Elliott, John T. Woodward, Anita Umarji, Ying Mei and Alessandro Tona, The effect of surface chemistry on the formation of thin films of native fibrillar collagen. Biomaterials., 28(4), 576-585, 2007
Part II
1. C. K. Harnett, K. M. Satyalakshmi and H. G. Craighead, Bioactive Templates Fabricated by Low-Energy Electron Beam Lithography of Self-Assembled Monolayers. Langmuir, 17(1), 178-182, 2001
2. Uland Y. Lau, Sina S. Saxer, Juneyoung Lee, Erhan Bat and Heather D. Maynard, Direct Write Protein Patterns for Multiplexed Cytokine Detection from Live Cells Using Electron Beam Lithography. ACS Nano., 10(1), 723-729, 2016
3. Marcus Liew Kai Hoa, Meihua Lu and Yong Zhang, Preparation of porous materials with ordered hole structure. Adv Colloid Interface Sci., 121(1-3), 9-23, 2006
4. Orlin D. Velev and Eric W. Kaler, Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals. Adv. Mater., 12(7), 531-534, 2000
5. Nathaniel J. Gleason, Christopher J. Nodes, Eileen M. Higham, Nedra Guckert, Ilhan A. Aksay, Jean E. Schwarzbauer and Jeffrey D. Carbeck, Patterning Proteins and Cells Using Two-Dimensional Arrays of Colloids. Langmuir, 19(3), 513-518, 2003
6. Thea Bøggild, Kasper Runager and Duncan S. Sutherland, Nanopattern Gradients for Cell Studies Fabricated Using Hole-Mask Colloidal Lithography. ACS Appl Mater Interfaces., 2016, in press, DOI:10.1021/acsami.5b08315
7. Michael Dörmann and Hans-Joachim Schmid, Simulation of Capillary Bridges between Nanoscale Particles. Langmuir., 30(4), 1055-1062, 2014
8. Sabine Leroch and Martin Wendland, Influence od Capillary Bridge Formation on to the Silica Nanoparticle Interaction Studied by Grand Canonical Monte Carlo Simulations. Langmuir., 29(40), 12410–12420, 2013
9. Xin Zhong, Alexandru Crivoi and Fei Duan, Sessile nanofluid droplet drying. Adv Colloid Interface Sci., 217, 13-30, 2015
10. Peter Wagner, Martin Hegner, Hans-Joachim Guentherodt and Giorgio Semenza, Formation and in Situ Modification of Monolayers Chemisorbed on Ultraflat Template-Stripped Gold Surfaces. Langmuir, 11(10), 3867–3875, 1995
11. Jayne C. Garno, Nabil A. Amro, Kapila Wadu-Mesthrige and Gang-Yu Liu, Production of Periodic Arrays of Protein Nanostructures Using Particle Lithography. Langmuir, 18(21), 8186–8192, 2002
12. Jie-Ren Li, Gretchen C. Henry and Jayne C. Garno, Fabrication of nanopatterned films of bovine serum albumin and staphylococcal protein A using latex particle lithography. Analyst., 131(2), 244-250, 2006