簡易檢索 / 詳目顯示

研究生: 陳凱怡
Chen, Kai-Yi
論文名稱: 沃斯回火及Q&P熱處理對S50C中碳鋼之微觀組織及機械強度之影響探討
Effects of austempering and Q&P on the microstructure and mechanical strength of S50C medium carbon steel
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: 碳鋼沃斯回火QP熱處理下變韌鐵
外文關鍵詞: carbon steel, austempering, QP heat treatment, lower bainite
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用S50C分別進行沃斯回火熱處理與Q&P熱處理,並研究鋼材經這兩種不同熱處理後之顯微組織與機械強度。
    實驗結果顯示,S50C分別經MS點上(350°C)與下(320、290、260°C)不同溫度之沃斯回火熱處理60分鐘後,MS點上之沃斯回火熱處理只會生成下變韌鐵與少量的殘留沃斯田鐵,而持溫溫度低於MS點之沃斯回火處理則由回火麻田散鐵、下變韌鐵與殘留沃斯田鐵所組成。
    為應用上考量,拉伸試驗以雙環型試片作為拉伸試片。隨沃斯回火溫度的提高,影響回火麻田散鐵、下變韌鐵與殘留沃斯田鐵的相比例,因此使硬度與雙環型試片之抗拉強度皆隨沃斯回火溫度的提高而降低;另外進行260°C不同時間之沃斯回火,除了以雙環型試片進行拉伸試驗外,並製作標準拉伸試片以比較無notch effect影響下之拉伸性質。結果顯示隨著時間的增加,雙環型試片之抗拉強度約都只剩標準拉伸試片的70 %,受到notch effect的影響並無太大差異;而位移量下降幅度則低於標準拉伸試片,可知260°C持溫時間愈短的試片,其延性受notch effect的影響幅度較明顯。
    當S50C經由不同條件之Q&P熱處理後,微觀組織皆為回火麻田散鐵、下變韌鐵與殘留沃斯田鐵所組成。隨著partitioning溫度的提升,麻田散鐵內的碳往鄰近沃斯田鐵相擴散而達到不同程度之回火,使S50C的抗拉強度與硬度皆因此而明顯地下降;而partitioning時間的增加也會使S50C的抗拉強度與硬度有下降的趨勢,下降趨勢可分為0 ~ 15分鐘變化較明顯之區間與15 ~ 60分鐘變化和緩之區間。
    透過本實驗兩種熱處理方式所得之最佳條件為經260°C沃斯回火熱處理15分鐘組(A26015),其雙環型試片抗拉強度約為1350 MPa,而標準拉伸試片則可達約1930 MPa,皆較於約300°C淬火回火者佳。

    In this study, the microstructure and mechanical properties of S50C were investigated after austempering and Q&P heat treatment, respectively.
    The results showed that lower bainite and a small amount of retained austenite were formed after austempering heat treatment with holding temperature 350°C which is above Ms for 60 minutes while tempered martensite, lower bainite and retained austenite were observed after austempering heat treatment with holding temperature 320, 290 and 260°C which are below Ms for 60 minutes. For application, the eyeglass specimen was used as tensile test specimen. With the holding temperature increased, the phase fraction of tempered martensite, lower bainite and retained austenite were varied, which lead to the decrease of the hardness and tensile strength of eyeglass specimen. In addition, the specimen was under austempering heat treatment for different holding time at 260°C and the tensile strength of standard tensile test specimen was examined as comparison to tensile strength without notch effect. The result indicated that the tensile strength of eyeglass specimens were about 70 % of that measured from the standard specimen, and the amount of displacement of eyeglass specimens decreased less than that measured from the standard specimen with the increase of holding time. That is, the notch effect on the tensile strength of eyeglass specimen with different holding time at 260°C was not obvious. But notch effect on the ductility with short holding time at 260°C was obvious.
    Tempered martensite and lower bainite and retained austenite were formed after different conditions of Q&P heat treatment. As partitioning temperature increased, the tensile strength and hardness of S50C were decreased because the carbon in martensite diffused to adjacent austenite which caused different degree of tempering. Tensile strength and hardness of S50C decreased as partitioning time increased. Moreover, the decrease of tensile strength and hardness with holding time for 5 to 15 minutes was more obvious than 15 to 60 minutes.
    In this work, the optimum condition among austempering and Q&P heat treatment was that obtained by austempering heat treatment at 260°C for 15 minutes (A26015). Tensile strength of eyeglass specimen is about 1350 MPa and the standard tensile test specimen is up to about 1930 MPa, both of them are better than those after tempering at 300°C.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2-1 碳鋼 2 2-2 沃斯回火熱處理 2 2-3 Q&P熱處理 3 2-4麻田散鐵 4 2-5變韌鐵 5 第三章 實驗方法 14 3.1 試片成份與製備 14 3-2 熱處理 14 3-2-1 沃斯回火熱處理 14 3-2-2 Q&P熱處理 15 3-3 微觀組織觀察及XRD相鑑定 15 3-4 機械性質 16 3-4-1 硬度測試 16 3-4-2 拉伸性質 16 第四章 實驗結果與討論 24 4-1 微觀組織 24 4-1-1不同沃斯回火熱處理試片之微觀組織 24 4-1-2 不同Q&P熱處理試片之微觀組織 25 4-2 X-ray繞射相鑑定 26 4-2-1 不同沃斯回火處理試片之X-ray繞射相鑑定 26 4-2-2 不同Q&P處理之X-ray繞射相鑑定 27 4-3 機械性質 28 4-3-1 不同沃斯回火熱處理試片之機械性質 28 4-3-2不同Q&P熱處理試片之機械性質 29 4-3-3兩種熱處理中最佳機械性質之條件 31 第五章 結論 57 1.沃斯回火熱處理 57 2. Q&P熱處理 57 3 兩種熱處理中之最佳條件A26015 58 參考文獻 59

    [1] 余煥騰、陳適範、唐自標,『金屬熱處理學(上)』,六合出版社,頁88,民國八十八年一月。
    [2] 大和久重雄著,王龍祥譯,『S曲線-熱處理恆溫變態曲線』,正言出版社,頁191-199,頁260,民國六十八年八月。
    [3] 劉火欽,『金屬材料』,三民書局,頁61-66,民國七十七年八月。
    [4] 余煥騰、陳適範、唐自標,『金屬熱處理學(下)』,六合出版社,頁19,民國八十八年一月。
    [5] E. S. Davenport, E .C. Bain, “Transformation of austenite at constant subcritical temperature”, Trans. AIME, vol 90, 117-154, (1930).
    [6] 涂孟寅,『JIS SK5及JIS S60C鋼之變韌鐵組織與其它組織的性質比較』,國立台灣大學材料所博士論文,頁1-11,民國九十五年九月。
    [7] H. K. D. H Badeshia, “Bainite in steels”, The Institute of Materials, London, pp. 2-69, p125, (1992).
    [8] J. Speer, D. K. Matlock, B. C. De Cooman, J. G. Schroth, “Carbon partitioning into austenite after martensite transformation”, Acta Mater, vol 56, 2611-2622, (2003).
    [9] J, G. Speer, F. C. R. Assunção, D. V. Edmonds, “The“Quenching and Partitioning”Process: Background and recent progress”, Mat. Res, vol 8 (4), 417-423, (2005).
    [10] E. P. Bagliani, M. J. Satofimia, L. Zhao, J. Sietsma, E. Anelli, “Microstrcture, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel”, Mater. Sci. Eng. , A, vol 559, 486-495, (2013).
    [11] G. Krauss, “Steels:Heat treatment and processing principles”, ASM, Materials Park, Ohio, pp. 53- 54, (1990).
    [12] D. K. Matlock, V. E. Bräutigam, and J. G. Speer, “Application of the quenching and partitioning (Q&P) process to a medium carbon, high-Si microalloyed bar steels”, Mater. Sci. Forum, vol 426-432, 1089-1094, (2003).
    [13] A. Z. Hanzaki, P. D. Hodgson, S. YUE, “Retained austenite characteristics in thermomechanically processed Si-Mn Transformation-induced plasticity steels”, Metall. Mater. Trans. A, vol 28, 2405-2414, (1997).
    [14] R. W. K. Honeycombe, “Steels:microstructure and properties”, second edition, Edward Arnold, pp. 76-90, (1982).
    [15] 陳善仕,『沖壓零件用S50C 碳鋼具最佳機械性質之沃斯回火熱處理條件』,國立中央大學機械所碩士論文,頁1-9,民國九十五年六月。
    [16] H, Kitahara, R, Ueji, N, Tsuji, Y, Minamino, “Crystallographic features of lath martensite in low-carbon steel”, Acta Mater, vol 54, 1279-1288, (2006).
    [17] R. W. K. Honeycombe, H. K. D. H. Bhadeshia, “Steels microstructure and properties”, Third edition, Elsevier Ltd, p. 111, (2006).
    [18] 呂璞石、黃振賢,『金屬材料』,文京圖書有限公司,頁163,民國七十四年六月。
    [19] A. Stormvinter, P. Hedström, A. Borgenstam, “A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels”, J. Mater. Sci. Technol. , vol 29(4), 373-379, (2013).
    [20] H. Y. Li, X. W. Lu, X. C. Wu, Y. A. Min, X. J. Jin, “Bainite transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon”, Mater. Sci. Eng. , A, vol 527, 6255-6259, (2010).
    [21] S. M. C. van Bohemen, M. J. Santofimia and J. Sietsma, “Experimental evidence for bainite formation below Ms in Fe–0.66C”, Scripta Mater, vol 58, 488-491, (2008).
    [22] ASM, “Metals handbook ninth edition, volume 1, properties and selection: irons and steels”, ASM, Metal park , Ohio, p. 467, (1978).

    無法下載圖示 校內:2018-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE