| 研究生: |
謝宗穎 Hsieh, Tsung-Ying |
|---|---|
| 論文名稱: |
C反應蛋白質刺激在嗜中性球活化之角色 The role of C-reactive protein-mediated stimulation in neutrophil activation |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 原形態C反應蛋白 、單體C反應蛋白 、priming 、NADPH氧化酵素 、嗜中性白血球 、氧活性物質 、呼吸爆發 、p47phox蛋白質 |
| 外文關鍵詞: | native C-reactive protein, modified C-reactive protein, priming, leukocyte NADPH oxidase, neutrophil, reactive oxygen species, p47phox, respiratory burst |
| 相關次數: | 點閱:151 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原形態C反應蛋白(native C-reactive protein, nCRP) 是ㄧ種五聚體構造的急性期蛋白質。當身體發炎時,會從肝臟大量表現出來,在血漿的濃度會上升到原本得一百倍或更多。而在發炎的組織處,會產生出另一種以單體蛋白形式存在的修飾或單體C反應蛋白(modified CRP或monomeric CRP, mCRP)。無論如何,原形態C反應蛋白和單體C反應蛋白,兩者已被報導具有相當不一樣的生物活性,兩個異構體更被認為在先天免疫反應以及冠狀動脈硬化 (atherosclerosis) 的疾病進程等發炎疾病上扮演重要的角色。嗜中性白血球 (neutrophil) 可以藉由釋放毒殺分子來摧毀外來的病原體,即活化的嗜中性白血球經由NADPH氧化酵素(NADPH oxidase) 可以消耗氧氣來產生大量的氧活性分子 (reactive oxygen species, ROS)。其中NADPH oxidase的細胞質蛋白的磷酸化並且轉移到細胞膜部分組裝起來,可以使得NADPH氧化酵素處在準備好的狀態。當嗜中性白血球受到第二個刺激後,便可以產生更多的氧活性分子,這樣的過程就稱為”priming effect”。處在primed狀態的嗜中性白血球,將可以更容易的產生快速且強力的毒殺作用。本篇研究主要就是要探討C反應蛋白異構體對於嗜中性白血球是否有priming或者活化的作用。首先,我們發現原形態C反應蛋白對於嗜中性白血球或者分化後的HL-60細胞株具有priming的作用,且是ㄧ個劑量依賴姓的反應,可以明顯增加PMA刺激後的呼吸爆發 (respiratory burst)。進一步探討其分子機制,確認原形態的C反應蛋白可以促使NADPH氧化酵素內的細胞質內蛋白p47phox的磷酸化,而且是經由p38 MAPK的路徑。相較之下,發現單體C反應蛋白具有良好的活化作用,並經由ERK路徑,但幾乎不能prime嗜中性白血球。而在FcgammaR拮抗實驗中,原形態C反應蛋白媒介的priming作用在dHL-60上的FcgammaR並沒有顯著的功能。這篇研究顯露出C反應蛋白異構體在嗜中性白血球活化上,扮演不同的角色。
Native C-reactive protein (nCRP) is a pentameric acute phase protein expressed at high serum concentrations in inflammation. At inflammatory sites, another form of CRP termed modified or monomeric CRP (mCRP) is expressed and represents a monomeric structure. However, nCRP and mCRP have quite different bioactivities. Both isoforms are proposed to play roles in innate immunity and may participate in the pathogenesis of atherosclerosis and other diseases related with inflammation. Neutrophils can destroy pathogens by releasing microbicidal molecules in inflammation. Activated neutrophils consume oxygen and generate reactive oxygen species (ROS) by activating leukocyte NADPH oxidase. Phosphorylation as well as translocation of cytosolic components of leukocyte NADPH oxidase prepares neutrophils for subsequent stimulations. This step is termed “priming effect” which enhance the ROS production when neutrophils are triggered. In primed state, neutrophils easily perform fast and powerful microbicidal activity. Here, we investigated the potential role of CRP isoforms for priming and triggering neutrophil. We found that nCRP mediates priming of granulocyte and DMSO-differentiated HL-60 for PMA-induced respiratory burst. This effect is dosage-dependent. The priming mechanism of nCRP transduced through the phosphorylation of the cytosolic subunit p47phox, via p38 MAPK pathway. In contrast, mCRP triggers neutrophils via ERK, but have little effect in priming neutrophil. We also showed that FcgammaR on dHL-60 had no function in nCRP-mediated priming effect. This study revealed the different roles of CRP isoforms in neutrophil activation.
Reference
1. Fernandez, H.N., Henson, P.M., Otani, A. & Hugli, T.E. Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo conditions. J Immunol 120, 109-115 (1978).
2. Schiffmann, E., Corcoran, B.A. & Wahl, S.M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72, 1059-1062 (1975).
3. Nauseef, W.M. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122, 277-291 (2004).
4. Hallett, M.B. & Lloyds, D. Neutrophil priming: the cellular signals that say 'amber' but not 'green'. Immunol Today 16, 264-268 (1995).
5. Elbim, C., Bailly, S., Chollet-Martin, S., Hakim, J. & Gougerot-Pocidalo, M.A. Differential priming effects of proinflammatory cytokines on human neutrophil oxidant burst in response to bacterial N-formyl peptides. Infect Immun 62, 2195-2201 (1994).
6. Vercellotti, G.M., Yin, H.Q., Gustafson, K.S., Nelson, R.D. & Jacob, H.S. Platelet-activating factor primes neutrophil responses to agonists: role in promoting neutrophil-mediated endothelial damage. Blood 71, 1100-1107 (1988).
7. Guthrie, L.A., McPhail, L.C., Henson, P.M. & Johnston, R.B., Jr. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med 160, 1656-1671 (1984).
8. Kantari, C., Pederzoli-Ribeil, M. & Witko-Sarsat, V. The role of neutrophils and monocytes in innate immunity. Contrib Microbiol 15, 118-146 (2008).
9. Levy, O. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J Leukoc Biol 76, 909-925 (2004).
10. Segal, A.W. How neutrophils kill microbes. Annu Rev Immunol 23, 197-223 (2005).
11. Robinson, J.M., Ohira, T. & Badwey, J.A. Regulation of the NADPH-oxidase complex of phagocytic leukocytes. Recent insights from structural biology, molecular genetics, and microscopy. Histochem Cell Biol 122, 293-304 (2004).
12. DeLeo, F.R. & Quinn, M.T. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 60, 677-691 (1996).
13. Babior, B.M., Kipnes, R.S. & Curnutte, J.T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52, 741-744 (1973).
14. Ramos, C.L., Pou, S., Britigan, B.E., Cohen, M.S. & Rosen, G.M. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267, 8307-8312 (1992).
15. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A. & Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87, 1620-1624 (1990).
16. McCord, J.M. & Fridovich, I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244, 6056-6063 (1969).
17. Commoner, B., Townsend, J. & Pake, G.E. Free radicals in biological materials. Nature 174, 689-691 (1954).
18. Sen, C.K. & Packer, L. Antioxidant and redox regulation of gene transcription. FASEB J 10, 709-720 (1996).
19. Remacle, J., Raes, M., Toussaint, O., Renard, P. & Rao, G. Low levels of reactive oxygen species as modulators of cell function. Mutat Res 316, 103-122 (1995).
20. Mittal, C.K. & Murad, F. Properties and oxidant regulation of guanylate cyclase. J Cyclic Nucleotide Res 3, 381-391 (1977).
21. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidant stress to inflammasome activation. Nat Immunol 11, 136-140 (2010).
22. Nathan, C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111, 769-778 (2003).
23. Liu, S.Y., Tsai, M.Y., Chuang, K.P., Huang, Y.F. & Shieh, C.C. Ligand binding of leukocyte integrin very late antigen-4 involves exposure of sulfhydryl groups and is subject to redox modulation. Eur J Immunol 38, 410-423 (2008).
24. Chuang, K.P. et al. Ligation of lymphocyte function-associated antigen-1 on monocytes decreases very late antigen-4-mediated adhesion through a reactive oxygen species-dependent pathway. Blood 104, 4046-4053 (2004).
25. Fridovich, I. Overview: biological sources of O2. Methods Enzymol 105, 59-61 (1984).
26. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. & Mazur, M. Free radicals, metals and antioxidants in oxidant stress-induced cancer. Chem Biol Interact 160, 1-40 (2006).
27. Masella, R., Di Benedetto, R., Vari, R., Filesi, C. & Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16, 577-586 (2005).
28. Sayre, L.M., Smith, M.A. & Perry, G. Chemistry and biochemistry of oxidant stress in neurodegenerative disease. Curr Med Chem 8, 721-738 (2001).
29. Babior, B.M., Curnutte, J.T. & McMurrich, B.J. The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst. J Clin Invest 58, 989-996 (1976).
30. Lambeth, J.D., Cheng, G., Arnold, R.S. & Edens, W.A. Novel homologs of gp91phox. Trends Biochem Sci 25, 459-461 (2000).
31. Suh, Y.A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82 (1999).
32. Bedard, K. & Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313 (2007).
33. Kannengiesser, C. et al. Molecular epidemiology of chronic granulomatous disease in a series of 80 kindreds: identification of 31 novel mutations. Hum Mutat 29, E132-E149 (2008).
34. Smith, R.M. & Curnutte, J.T. Molecular basis of chronic granulomatous disease. Blood 77, 673-686 (1991).
35. Babior, B.M. The respiratory burst oxidase and the molecular basis of chronic granulomatous disease. Am J Hematol 37, 263-266 (1991).
36. Huang, Y.F., Liu, S.Y., Yen, C.L., Yang, P.W. & Shieh, C.C. Thapsigargin and flavin adenine dinucleotide ex vivo treatment rescues trafficking-defective gp91phox in chronic granulomatous disease leukocytes. Free Radic Biol Med 47, 932-940 (2009).
37. Hohn, D.C. & Lehrer, R.I. NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest 55, 707-713 (1975).
38. DeChatelet, L.R., McPhail, L.C., Mullikin, D. & McCall, C.E. An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes. J Clin Invest 55, 714-721 (1975).
39. Quinn, M.T., Mullen, M.L. & Jesaitis, A.J. Human neutrophil cytochrome b contains multiple hemes. Evidence for heme associated with both subunits. J Biol Chem 267, 7303-7309 (1992).
40. El-Benna, J., Dang, P.M. & Gougerot-Pocidalo, M.A. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 30, 279-289 (2008).
41. Uhlinger, D.J., Taylor, K.L. & Lambeth, J.D. p67-phox enhances the binding of p47-phox to the human neutrophil respiratory burst oxidase complex. J Biol Chem 269, 22095-22098 (1994).
42. Cross, A.R. p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J 349, 113-117 (2000).
43. Fung, Y.L. & Silliman, C.C. The role of neutrophils in the pathogenesis of transfusion-related acute lung injury. Transfus Med Rev 23, 266-283 (2009).
44. Cherry, T., Steciuk, M., Reddy, V.V. & Marques, M.B. Transfusion-related acute lung injury: past, present, and future. Am J Clin Pathol 129, 287-297 (2008).
45. Dry, S.M., Bechard, K.M., Milford, E.L., Churchill, W.H. & Benjamin, R.J. The pathology of transfusion-related acute lung injury. Am J Clin Pathol 112, 216-221 (1999).
46. Sheppard, F.R. et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 78, 1025-1042 (2005).
47. Woodman, R.C. et al. Respiratory burst oxidase and three of four oxidase-related polypeptides are associated with the cytoskeleton of human neutrophils. J Clin Invest 87, 1345-1351 (1991).
48. Dewas, C., Dang, P.M., Gougerot-Pocidalo, M.A. & El-Benna, J. TNF-alpha induces phosphorylation of p47(phox) in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF-alpha and granulocyte-macrophage colony-stimulating factor. J Immunol 171, 4392-4398 (2003).
49. Dang, P.M. et al. Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47(phox). J Biol Chem 274, 20704-20708 (1999).
50. Forehand, J.R., Bomalski, J.S. & Johnston, R.B., Jr. Mechanisms of lipopolysaccharide priming for enhanced respiratory burst activity in human neutrophils. Adv Exp Med Biol 297, 65-73 (1991).
51. Forehand, J.R., Pabst, M.J., Phillips, W.A. & Johnston, R.B., Jr. Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J Clin Invest 83, 74-83 (1989).
52. Luchi, M. & Munford, R.S. Binding, internalization, and deacylation of bacterial lipopolysaccharide by human neutrophils. J Immunol 151, 959-969 (1993).
53. Dang, P.M. et al. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 116, 2033-2043 (2006).
54. Karlsson, A., Nixon, J.B. & McPhail, L.C. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J Leukoc Biol 67, 396-404 (2000).
55. Walker, B.A., Hagenlocker, B.E. & Ward, P.A. Superoxide responses to formyl-methionyl-leucyl-phenylalanine in primed neutrophils. Role of intracellular and extracellular calcium. J Immunol 146, 3124-3131 (1991).
56. Shrive, A.K., Holden, D., Myles, D.A. & Greenhough, T.J. Structure solution of C-reactive proteins: molecular replacement with a twist. Acta Crystallogr D Biol Crystallogr 52, 1049-1057 (1996).
57. Koenig, W. et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99, 237-242 (1999).
58. Eisenhardt, S.U., Thiele, J.R., Bannasch, H., Stark, G.B. & Peter, K. C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle 8, 3885-3892 (2009).
59. Pasceri, V., Willerson, J.T. & Yeh, E.T. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102, 2165-2168 (2000).
60. Pasceri, V., Cheng, J.S., Willerson, J.T. & Yeh, E.T. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 103, 2531-2534 (2001).
61. Paul, A. et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 109, 647-655 (2004).
62. Griendling, K.K., Minieri, C.A., Ollerenshaw, J.D. & Alexander, R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74, 1141-1148 (1994).
63. Ballou, S.P. & Lozanski, G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4, 361-368 (1992).
64. Taylor, K.E., Giddings, J.C. & van den Berg, C.W. C-reactive protein-induced in vitro endothelial cell activation is an artefact caused by azide and lipopolysaccharide. Arterioscler Thromb Vasc Biol 25, 1225-1230 (2005).
65. Zouki, C., Beauchamp, M., Baron, C. & Filep, J.G. Prevention of In vitro neutrophil adhesion to endothelial cells through shedding of L-selectin by C-reactive protein and peptides derived from C-reactive protein. J Clin Invest 100, 522-529 (1997).
66. Potempa, L.A., Maldonado, B.A., Laurent, P., Zemel, E.S. & Gewurz, H. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol 20, 1165-1175 (1983).
67. Eisenhardt, S.U. et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res 105, 128-137 (2009).
68. Zouki, C., Haas, B., Chan, J.S., Potempa, L.A. & Filep, J.G. Loss of pentameric symmetry of C-reactive protein is associated with promotion of neutrophil-endothelial cell adhesion. J Immunol 167, 5355-5361 (2001).
69. Khreiss, T., Jozsef, L., Potempa, L.A. & Filep, J.G. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res 97, 690-697 (2005).
70. Khreiss, T., Jozsef, L., Potempa, L.A. & Filep, J.G. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109, 2016-2022 (2004).
71. Nauseef, W.M. Isolation of human neutrophils from venous blood. Methods Mol Biol 412, 15-20 (2007).
72. Edwards, S.W. Biochemistry and physiology of the neutrophil, Edn. 1st pbk. (Cambridge University Press, Cambridge England ; New York; 2005).
73. Stein, M.P., Mold, C. & Du Clos, T.W. C-reactive protein binding to murine leukocytes requires Fc gamma receptors. J Immunol 164, 1514-1520 (2000).
74. Bharadwaj, D., Stein, M.P., Volzer, M., Mold, C. & Du Clos, T.W. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 190, 585-590 (1999).
75. El-Benna, J., Dang, P.M., Gougerot-Pocidalo, M.A. & Elbim, C. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53, 199-206 (2005).
76. Behe, P. & Segal, A.W. The function of the NADPH oxidase of phagocytes, and its relationship to other NOXs. Biochem Soc Trans 35, 1100-1103 (2007).
77. Condliffe, A.M., Kitchen, E. & Chilvers, E.R. Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin Sci (Lond) 94, 461-471 (1998).
78. Kuhlmann, C.R. et al. Mechanisms of C-reactive protein-induced blood-brain barrier disruption. Stroke 40, 1458-1466 (2009).
79. Verma, S., Szmitko, P.E. & Yeh, E.T. C-reactive protein: structure affects function. Circulation 109, 1914-1917 (2004).
80. Wewers, M.D. et al. Tumor necrosis factor infusions in humans prime neutrophils for hypochlorous acid production. Am J Physiol 259, L276-282 (1990).
81. Bass, D.A., Olbrantz, P., Szejda, P., Seeds, M.C. & McCall, C.E. Subpopulations of neutrophils with increased oxidant product formation in blood of patients with infection. J Immunol 136, 860-866 (1986).
82. Ricevuti, G., Mazzone, A., De Servi, S., Specchia, G. & Fratino, P. New trends in coronary artery disease: the role of granulocyte activation. Atherosclerosis 78, 261-265 (1989).
83. Mehta, J. et al. Neutrophil function in ischemic heart disease. Circulation 79, 549-556 (1989).
84. Hingorani, A.D., Shah, T. & Casas, J.P. Linking observational and genetic approaches to determine the role of C-reactive protein in heart disease risk. Eur Heart J 27, 1261-1263 (2006).
85. Boncler, M. & Watala, C. Regulation of cell function by isoforms of C-reactive protein: a comparative analysis. Acta Biochim Pol 56, 17-31 (2009).
86. Saeland, E. et al. Human C-reactive protein does not bind to FcgammaRIIa on phagocytic cells. J Clin Invest 107, 641-643 (2001).
87. Zahedi, K., Tebo, J.M., Siripont, J., Klimo, G.F. & Mortensen, R.F. Binding of human C-reactive protein to mouse macrophages is mediated by distinct receptors. J Immunol 142, 2384-2392 (1989).
88. Harrington, J.M. et al. Membrane activity of a C-reactive protein. FEBS Lett 583, 1001-1005 (2009).