| 研究生: |
吳京霖 Wu, Ching-Lin |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備電致變色氧化鎢奈米多孔薄膜及其在熱遮蔽之應用 Synthesis of Electrochromic Tungsten Oxide Nanostructured Films by Sol-gel Method and its Application to Thermal Shielding |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 氧化鎢薄膜 、電致變色 、多孔結構 、溶膠凝膠法 |
| 外文關鍵詞: | Tungsten oxide films, Electrochromism, Porous structure, Sol-gel method |
| 相關次數: | 點閱:79 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鎢電致變色元件可藉由外加電壓調節UVA紫外光、可見光和部份近紅外光,由於具有高穿透率變化、高著色效率及良好的化學穩定性,因此被認為具有潛力發展人性化智慧節能玻璃帷幕。然而其性質容易受到薄膜之結晶性、表面形貌、微結構與成分等影響,目前電致變色領域主要挑戰為可大面積化的多孔電極。本研究利用界面活性劑輔助溶膠凝膠法,製備具有奈米多孔的氧化鎢電致變色薄膜,分別從表面形貌的改變、結晶性的影響以及微結構的變化著手,探討其對電致變色性質的影響,最後以全溶液法組成全固態電致變色元件,並測量其熱遮蔽能力。
第一部份利用界面活性劑作為模板,引導氧化鎢薄膜形成多孔結構,而藉由界面活性劑的添加濃度改變,因為溶液中分子表面能的緣故,使得氧化鎢與有機物混合物會形成不同的微相結構,經過熱處理移除有機物後,最後形成具有不同多孔結構的氧化鎢薄膜。研究結果顯示,添加少於0.06 g/ml界面活性劑的氧化鎢薄膜具有約10 nm大小的奈米微孔,其穿透率變化量為60 %,而添加0.10 g/ml界面活性劑的氧化鎢薄膜具有數十奈米的球狀孔洞,其穿透率變化量為67.6 %。
承接第一部份的研究,第二部份以不同的溫度對奈米多孔氧化鎢進行熱處理,獲得具有不同結晶性的奈米多孔氧化鎢。以界面活性劑F-127作為模板使得孔洞結構足以承受400 ℃的熱處理溫度而不至於崩塌,透過循環伏安法和即時著/去色穿透率變化分光光譜途的分析,可以得知結晶奈米多孔氧化鎢薄膜雖然具有較佳的穩定性,然而較為緻密的晶體結構讓鋰離子在遷入或遷出時需要克服更大的應變能,而非晶質奈米多孔氧化鎢薄膜具有較佳的可逆性與反應速率,其著色與去色響應時間不到15秒,且經過千次循環仍舊保持穩定。
於第三部份將非晶質奈米多孔氧化鎢薄膜以不同的濕度進行時效處理,嘗試在氧化鎢結構中形成結晶水,研究結果顯示,在高濕度下進行時效處理之氧化鎢薄膜,其穿透率變化量相較於低濕度時效處理之氧化薄膜提升近兩成,而著/去色響應時間更縮短至10秒以內,著色效率也提升到60 cm2C-1,由Raman分析中可以發現OH拉伸散射峰變強,表示結晶水在氧化鎢結構中形成一快速質子交換通道,有助於電致變色反應。
最後一部份將前述氧化鎢薄膜和以溶膠凝膠法製備的氧化鉭薄膜,以化學浴成長的氧化鎳薄膜結合,組裝成全固態電致變色元件,透過紫外光-可見光-紅外光分光光譜儀的分析,以中華民國國家標準CNS 12381-R3161進行計算,可得到其可見光穿透率在去色和著色狀態下分別約為55 % 和36 %,而日光輻射熱穿透率在去色和著色狀態分別約為38 %和20 %,符合我國奈米隔熱膜產品規範。而實際以太陽燈照射量測照度的測試,可得其熱遮斷係數在著色和去色狀態分別為0.16和0.36,分別可阻擋84 %到64 %的能量穿透,具有調整日光輻射熱能穿透的能力與大面積化的潛力。
Electrochromic device have the ability to change the transmittance to block the solar radiation by controlling the applied voltage and have the application for energy-saving windows. State-of-the art, the challenges of the device are nanostructured electrodes and large-scale fabricating. In this research, porous tungsten oxide is synthesized by the surfactant-assisted sol-gel method. Porous structure, crystallinity, and composition can be modified by the concentration of surfactant, annealing temperature, and curing condition. The effects of different morphology and structure are studied by chronoampermetry and cyclic voltammetry. Transmittance modulation and coloration efficiencies are 67.6 % and ~60 cm2C-1. It needs less than 10 s to switch from colored state to beach state. All solid electrochromic devices are fabricated by all-solution method. Thermal shielding ability is measured by UV-Vis-IR spectroscopy and illuminating meter. Visible light transmittances and solar heat transmittances are 55.2/35.9 % and 38.2/20.1 % in colored/bleach state respectively. The transmitted illumination can be modulated from 36 % to 16 %. The transmittance in visible light region is higher than 50 % and the ability of blocking infrared is enough to use as energy-saving smart window.
1. World Population Prospects: The 2010 Revision, United Nations, NewYork,USA; http://esa.un.org/undp/wpp/Documentation/publications.htm
2. US Census Bureau, Washington, DC, USA; http://www.census.gov/main/www/popclock.html .
3. 2013台灣電力公司永續報告書, 台灣電力公司, 中華民國 (2013)
4. 2010 Buildings Energy Data Book, U.S. Department of Energy, Washington, DC, USA, 2011; http://buildingsdatabook.eere.energy.gov/
5. R. Baetens, B. P. Jelle, A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review”, Solar Energy Materials & Solar Cells 94 (2010) 87
6. D. T. Gillaspie, R. C. Tenent, A. C. Dillon, “Metal-oxide films for electrochromic applications: present technology and future directions”, Journal of Materials Chemistry 20 (2010) 9585.
7. C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Rönnow, M. S. Mattsson, M. Veszelei, G. Vaivars, “Recent advances in electrochromics for smart windows applications”, Solar Energy, 63, (1998) 199-216
8. C.G. Granqvist, E. Avendaño, A. Azens, “Electrochromic coatings and devices: survey of some recent advances”, Thin Solid Films 442 (2003) 201-211
9. Tintable Smart Material Co., Ltd., Product, Retrieved May 13, 2014, from http://www.tintable.com.tw
10. SageGlass, “Case Study, Chabot College, Hayward, California”, Retrieved May 13, 2014, from http://sageglass.com/wp-content/uploads/2013/04/case_study_chabot.pdf .
11. The PlaneBlog, “Dim dream windows”, Retrieved May 13, 2014 from http://theplaneblog.wordpress.com/
12. S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi, D. K. Kim, “Fast switchable electrochromic properties of tungsten oxide nanowire bundles”,Applied Physics. Letters 90 (2007) 173126
13. J. M. Wang, E. Khoo, P. S. Lee, J. Ma, “Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods”, The Journal of Physical Chemistry C 112 (2008) 14306-14312
14. S. H. Baeck, T. Jaramillo, G. D. Stucky, and E. W. McFarland, “Controlled Electrodeposition of Nanoparticulate Tungsten Oxide”, Nano Letters 2, (2002) 831-834
15. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A.C. Dillon, “Crystalline WO3 for highly improved electrochromic applications”, Advanced Materials 18 (2006) 763-766.
16. M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad, S. A. Agnihotry, “Electrochromic Nanostructured Tungsten Oxide Films by Sol-gel: Structure and Intercalation Properties”, Journal of The Electrochemistry Society 153, (2006) C365-C376
17. B. Yang, P. R. F. Barnes, W. Bertram, V. Luca, “Strong photoresponse of nanostructured tungsten trioxide films prepared via a sol–gel route”, J. Mater. Chem. 17, (2007) 2722-2729
18. J. R. Platt, “Electrochromism, A Possible Change of Color Producible in Dyes by An Electric Field”, Journal of Chemical Physics 34, (1961) 862-863.
19. 楊明長, 電致色變系統簡介, 化工 40, No. 2 (1993) 63-67.
20. 林保章, “三氧化鎢薄膜電極之製備及其電致色變性質之研究”, 台灣大學化學工程所, 碩士論文, 民國八十七年.
21. S. K. Deb, “A Novel Electrophotographic System”, Applied Optics 8 (1969) 192-195.
22. C. M. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control”, Solar Energy Materials & Solar Cells 58 (1998) 207-221.
23. K. Bange, “Colouration of tungsten oxide films: A model for optically active coatings”, Solar Energy Materials & Solar Cells 58 (1999) 1-131.
24. B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 Amorphous Films”, RCA Review 36 (1975) 177-197.
25. S. H. Lee, H. M. Cheong, J. G. Zhang, A. Mascarenhas, D. K. Benson, S. K. Deb, “Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency”, Applied Physical Letters 75 (1999) 1541-1543
26. C. G. Granqvist, “Handbook of Inorganic Electrochromic Materials”, Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo (1995)
27. C. Chaneliere, J. L. Autran, R. A. B Devine, B. Balland, “Tantalumpentoxide thin films for advanced dielectric applications”, MaterialsScience and Engineering R22 (1998) 268-322.
28. P. van der Sluis, V. M. M. Mercier, “Solid state Gd-Mg electrochromicdevices with ZrO2Hx electrolyte”, Electrochimica Acta 46 (2001) 2167-2171.
29. W. Cheng, E. Baudrin, B. Dunn, J. I. Zink, “Synthesis and electrochromic properties of mesoporous tungsten oxide”, Journal of Materials chemistry 11 (2001) 92-97.
30. C. Santato, M. Odziemlowski, M. Ulmann, J. Augustynski, “Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications”, Journal of the American Chemical Society 123 (2001) 10639-10649.
31. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks”, Nature 396 (1998) 152-155
32. T. Brezesinski, D. F. Rohlfing, S. Sallard, M. Antonietti, B. M. Smarsly, “Highly Crystalline WO3 Thin Films with Ordered 3D Mesoporousity and Improved Electrochromic Performance”, Small 2 (2006) 1203-1211.
33. E. O. Zayim, P. Liu, S. H. Lee, C. E. Tracy, J. A. Turner, J. R. Pitts, S. K. Deb, “Mesoporous sol-gel WO3 thin films via poly(styrene-co-allyl-alcohol) copolymer templates”, Solid State Ionics 165 (2003) 65-72.
34. C. K. Wang, C. K. Lin, C. L. Wu, S. C. Wang, J. L. Huang, “Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten”, Electrochimica Acta 112 (2013) 24-31.
35. G. F. Cai, J. P. Tu, D. Zhou, X. L. Wang, C. D. Gu, “Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance” Solar Energy Materials & Solar Cells 124 (2014) 103-110.
36. J. Zhang, J. P. Tu, G. F. Cai, G. H. Du, X. L. Wang, P. C. Liu, “Enhanced electrochromic performance of highly ordered, marcoporous WO3 arrays electrodeposited using polystyrene colloid crystals as template”, Electrochimica Acta 99 (2013) 1-3.
37. C. P. Li, F. Lin, R. M. Richards, C. Engtrakul, R. C. Tenent, C. A. Wolden, “ The influence of sol-gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition”, Solar Energy Materials & Solar Cells 121 (2014) 163-170.
38. Y. Shen, T. Yamanzaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, “Influence of effective surface area on gas sensing properties of WO3 sputtered thin films”, Thin Solid Films 517 (2009) 2069-2072.
39. K. J. Patel, C. J. Panchal, M. S. Desai, P. K. Mehta, “An investigation of the insertion of the cations H+, Na+, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate”, Materials Chemistry Physics 124 (2010) 884-890.
40. C. M. White, D. T. Gillaspie, E. Whitney, S. H. Lee, A. C. Dillon, “Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition”, Thin Solid Films 517 (2009) 3596-3599.
41. W. T. Wu, W. P. Liao, J. S. Chen, J. J. Wu, “An Efficient Route to Nanostructured Tungsten Oxide Films with Improved Electrochromic Properties”, CHEMPHYSCHEM 11 (2010) 3306-3312.
42. S. Sakka, “Handbook of sol-gel science and technology: processing, characterization, and applications”, Springer, Berlin, Germany (2005)
43. T. Kudo, J. Oi, A. Kishimoto, M. Hiratani, “ Three kinds of framework structures of corner sharing WO6 octahedra derived from peroxopolytungstates as a precursor”, Materials Research Bulletin 26 (1991) 779-787.
44. Y. Ren, W. K. Chim, L. Guo, H. Tanoto, J. Pan, S. Y. Chiam, “The coloration and degradation mechanisms of electrochromic nickel oxide”, Solar Energy Materials & Solar Cells 116 (2013) 83-88.
45. M. Deepa, A. K. Srivastava, K.N. Sood, S. A. Agnihotry, “Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows”, Nanotechnology 17 (2006) 2625-2630
46. M. Deepa, P. Singh, S. N. Sharma, S. A. Agnihotry, “Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films”, Solar Energy Materials & Solar Cells 90 (2006) 2665-2682.
47. G. Janauer, A. Dobley, J. Guo, P. Zavalij, M. Whittingham, “Novel Tungsten, Molybdenum, and Vanadium Oxides Containing Surfactant Ions”, Chemistry of Materials 8 (1996) 2096-2101.
48. W. Wang, Y. Pang, S. N. B. Hodgson, “XRD studies of thermally stable mesoporous tungsten oxide synthesized by a templated sol-gel process from tungstic acid precursor”, Microporous and Mesoporous Materials 121 (2009) 121-128.
49. Stein, M. Fendorf, T. Jarvie, K. Mueller, A. Benesi, T. Mallouk, “Salt-Gel Synthesis of Porous Transition-Metal Oxides”, Chemistry of Materials 7 (1995) 304-313.
50. E. Ozkan, S. H. Lee, C. E. Tracy, J. R. Pitts, S. K. Deb, “Comparison of electrochromic amorphous and crystalline tungsten oxide films”, Solar Energy Materials & Solar Cells 79 (2003) 439-448.
51. Taguchi, T. Abe, M. Iwamoto, “Non-silica-based mesostructured material. 2. Synthesis of hexagonal superstructure consisting of 11-tungstophosphate anions and dodecyltrimethylammonium cations”, Microporous and Mesoporous Materials 21 (1998) 387-393.
52. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D Stucky, “Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks”, Nature 396 (1998) 152-155
53. N. K. Raman, M. T. Anderson, C. J. Brinker, “Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas”, Chemistry of Materials 8 (1996) 1682-1701.
54. K. M. Karuppasamy, A. Subrahmmanyam, “Studies on the correlation between electrochromic colouration and the relative density of tungsten trioxide (WO3-x) thin films prepared by electron beam evaporation”, Journal of Physics D-Applied Physics 42 (2009) 095301.
55. E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura, K. Sasaki, “Optical and electrochromic properties of RF reactively sputtered WO3 films”, Solid State Ionics 165 (2003) 175-180.
56. K. Srivastava, M. Deepa, S. Singh, R. Kishore, S. A. Agnihotry, “Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films”, Solid State Ionics 176 (2005) 1161-1168
57. R. Vijaylakshmi, M. Jayachandran, S. Sanjeeviraja, “Structural, electrochromic and FT-IR studies on electrodeposited tungsten trioxide films”, Current Applied Physics 3 (2003) 171-175.
58. W. Wang, Y. Pang, S. N. B. Hodgson, “Preparation, characterisation and electrochromic property of mesostructured tungsten oxide films via a surfactant templated sol–gel process from tungstic acid”, Journal of Sol-gel Science and Technology 54 (2010) 19-28.
59. C.O. Avellaneda, P.R. Bueno, R.C. Faria, L.O.S. Bulhoes, “Electrochromic properties of lithium doped WO3 films prepared by the sol-gel process”, Electrochimica Acta 46 (2001) 1977-1981.
60. M. Deepa, T.K. Saxena, D.P. Singh, K.N. Sood, S.A. Agnihotry, “Spin coated versus dip coated electrochromic tungsten oxide films: structure, morphology, optical and electrochromic properties”, Electrochimica Acta 51 (2006) 1974-1989.
61. P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge (2007)
62. J. H. Pan, W. I. Lee, “Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties”, Chemistry of Materials 18 (2006) 847-853.
63. K. Lin, S. C. Tseng, C. H. Cheng, C. Y. Chen, C. C. Chen, “Electrochromic performance of hybrid tungsten oxide films with multiwalled-CNT additions”, Thin Solid Films S20 (2011) 1375-1378.
64. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, “Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications”, Advanced Materials 18 (2006) 763-766.
65. T. Brezesinski, D. F. Rohlfing, S. Sallard, M. Antonietti, B. M. Smarsly, “Highly Crystalline WO3 Thin Films with Ordered 3D Mesoporousity and Improved Electrochromic Performance”, Small 2 (2006) 1203-1211.
66. S. H. Lee, M. J. Seong, H. M. Cheong, E Ozkan, E. C. Tracy, S. K. Deb, “Effect of crystalline on electrochromic mechanism of LixWO3 thin films”, Solid State Ionics 156 (2003) 447-452.
67. Y. S. Ko, C. W. Koh, U. H. Lee, Y. U. Kwon, “Synthesis of mesoporous titania thin films with vertical pore channels and thick and crystalline walls”, Microporous and Mesoporous Materials 145 (2011) 141-145.
68. M. Deepa, Rashmi Sharma, A. Basu, S.A. Agnihotry, “Effect of oxalic acid dihydrate on optical and electrochemical properties of sol–gel derived amorphous electrochromic WO3 films”, Electrochimica Acta 50 (2005) 3545
69. Kattouf, G. L. Frey, A. Siegmann, Y. Ein-Eli, “Enhanced reversible electrochromism via in situ phase transformation in tungstate monohydrate”, Chemical Communications (2009) 7396-7398
70. S. H. Lee, H. M. Cheong, J. G. Zhang, A, Mascarenhas, D. K. Benson, S. K. Deb, “Electrochromic mechanism in a-WO3-y thin films”, Applied Physics Letters 74 (1999) 242-244.
71. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3”, Electrochimica Acta, 44 (1999) 3111-3115.
72. F. Amano, M. Tian, B. Ohtani, A. Chen, “Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets”, Journal of Solid State Electrochemistry 16 (2012) 1965-1973.
73. J. H. Ha, P. Muralidharan, D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, Journal of Alloys and Compounds 475 (2009) 446-451.
74. Y.-S. Huang, Y.-Z. Zhang, X.-F. Hu, “Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics”, Applied Surface Science 202 (2002) 104-109.
75. P. R. Bueno, F. M. Potes, E. R. Leite, L. O. S. Bulhoes, P. S. Pizani, P. N. Lisboa-Filho, W. H. Schreiner, “Structural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kinetics”, Journal of Applied Physics 96 (2004) 2102-2109.
76. G. Granqvist, “Electrochromics for smart windows: Oxide-based thin films and devices”, Thin Solid Films (2014) http://dx.doi.org/10.1016/j.tsf.2014.02.002
77. 奈米標章產品驗證制度:”奈米金屬氧化物透明隔熱膜驗證規範”, TN-034, 中華民國 (2011).
78. 蔡子湛, 以溶膠凝膠法製備多孔氧化鉭薄膜及其應用於全固態電致色變元件之研究, 國立成功大學材料所, 碩士論文 (2012)
79. 林憲德, “綠建築”, 科學發展 460 (2011年4月)
80. CNS12381-R3161: Method of test on transmittance and reflectance for daylight and solar radiation and solar heat gain coefficient of flat glass
81. ISO 9050:2003(E), Glass in building-determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors, (2003)
82. ISO 9845-1:1992(E), Solar energy-reference solar spectral irradiance at the ground at different receving conditions-Part 1: direct normal and hemispherical solar irradiance for air mass 1.5, (1992)