簡易檢索 / 詳目顯示

研究生: 林弘巾
Lin, Hung-Chin
論文名稱: Co2+少量取代及非劑量比對Ba(Mg1/3Nb2/3)O3陶瓷材料的晶體結構與微波介電性質之影響
The Effects of Small Amount of Cobalt Ion Substitution and Non-stoichiometry on Crystal Structure and Microwave Dielectric Properties of Ba(Mg1/3Nb2/3)O3 Ceramics.
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 微波介電性質有序程度品質因子
外文關鍵詞: Microwave dielectric properties, Ordering degree, Quality factor
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以Ba(Mg1/3Nb2/3)O3陶瓷材料為主體,對其B-site陽離子做少量同價取代與非劑量比(少量異價取代)的實驗。其中同價取代是以二價鈷離子少量從0.01到0.07取代Ba(Mg1/3Nb2/3)O3陶瓷材料中的二價鎂離子,並分別利用持溫4小時後自然爐冷與不持溫後每分鐘2oC慢速降溫,兩種不同製程條件來觀察微結構、有序程度與微波介電性質的變化。由實驗結果發現少量Co2+ 取代Mg2+ 可以促進晶粒的成長與有序程度提升,進而使Q x f 值上升,且在取代量為0.05 mole 時有序程度從原本沒有取代時62%提升到92%,Q x f 值也從14,000 GHz提升到43,000 GHz,而和先前研究大範圍取代量中性質最優異成分點(0.5 mole,Q x f = 40,000),性質表現相近。此外利用慢速降溫的方式可以使有序程度再提升到95%,進而使Q x f 值提升到60,000 GHz。
    而在非劑量比(少量異價取代)的實驗中,是在B-site些微偏離Ba(Mg1/3Nb2/3)O3其B-site為1:2的組成,但仍維持在有序且單一相的情況下,利用B-site 陽離子微量的不足或過剩的情況,促進了燒結與擴散,使晶粒大小、有序程度與Q x f 值皆大幅提升,其中在Ba(Mg0.97Nb2.012)1/3O3的組成時,其Q x f 值從原本Ba(Mg1Nb2)1/3O3的14,000 GHz提升到116,000 GHz,有序程度從 62%提升到95%。
    此外從本研究結果可知,不論是少量同價取代或是非劑量比(少量異價取代),晶粒大小與有序程度皆是影響Q x f 值的重要的因素,而在性質的表現上非劑量比(異價取代)又比同價取代還要好,此外若能使用不同的燒結條件控制降溫速率,進而促進有序程度或密度的提升,則可以獲得一較高的Q x f 值。

    There are two major experimental subjects in this study. The small amount of Co2+ substitution on Ba(Mg1/3Nb2/3)O3 and non-stoichiometry of Ba(Mg1/3Nb2/3)O3 were both investigated. The experimental results show that the ordering degree, mean grain size, and quality factor were increasing by small amount Co2+ substitution from x = 0.01 to x = 0.05, and could get an optimal value of quality factor at x = 0.05 (S = 92%, Q x f = 40,000 GHz). Moreover, through decreasing the cooling rate, the ordering degree increased 3% and the relative density increased 2% which increased the quality factor. At x = 0.05, the ordering degree is 95% and Q x f is 59,000 GHz.
    The experimental results of non-stoichiometry of Ba(Mg1/3Nb2/3)O3 indicated that through the slight deviation of B-site cation, that could obtain a great quality factor. When the composition located in Ba(Mg0.97Nb2.012)1/3O3, the ordering degree is 92% and the Q x f is 116,000GHz.
    In this study, the results demonstrated that the quality factor is depending on ordering degree and grain size. The quality factor increase while the ordering degree and mean grain size increased. The quality factor is better in non-stoichiometry of Ba(Mg1/3Nb2/3)O3 than small amount of Co2+ substitution of Ba(Mg1/3Nb2/3)O3. In addition, if it could change the sintering conditions to control the cooling rate that will have a higher quality factor.

    中文摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 前人研究及理論基礎 3 2-1 Ba(Mg1/3Nb2/3)O3之晶體結構 3 2-1-1 Ba(Mg1/3Nb2/3)O3有序與無序排列之相轉換 3 2-2 微波介電性質 5 2-3序化晶體的繞射 7 2-3-1序化與非序化 7 2-3-2有序程度之計算與分析 7 第三章 實驗方法及步驟 10 3-1起始原料 10 3-2粉末與燒結體製備 10 3-2-1粉末製備 10 3-2-2 粉末之熱重/熱差分析 12 3-2-3 燒結體製備 12 3-3 材料特性分析 13 3-3-1 燒結體密度量測 (Archimedes) 13 3-3-2 相鑑定 13 3-3-3 晶格常數計算 13 3-3-4 掃描式電子顯微鏡 (SEM) 14 3-4 材料介電性質量測 18 3-4-1 燒結體介電性質量測之準備 18 3-4-2 微波介電性質量測 18 第四章 Co2+ 的少量取代對Ba(Mg1/3Nb2/3)O3陶瓷材料的晶體結構與微波介電性質之影響 21 4-1 前言 21 4-2 實驗方法與步驟 22 4-3結果與討論 (I) 26 4-3-1粉末之熱重/熱差分析 26 4-3-2 燒結行為 30 4-3-3 晶體結構分析 30 4-3-4 顯微結構的觀察 38 4-3-5 有序程度與微波介電特性之計算結果 38 4-3-5 少量取代與大量取代對Ba(Mg1/3Nb2/3)O3之比較 47 4-4 結果與討論 (II) 50 4-4-1 顯微結構的觀察 50 4-4-2 有序程度與微波介電特性之計算結果 53 4-5 結論 58 第五章 非劑量比對Ba(Mg1/3Nb2/3)O3陶瓷材料的晶體結構與微波介電性質之觀察 59 5-1 前言 59 5-2 實驗方法與步驟 59 5-3 結果與討論 64 5-3-1 非劑量比其價數平衡化學式 64 5-3-2 燒結行為 65 5-3-2 晶體結構分析 67 5-3-3 微結構的觀察 72 5-3-4 有序程度與微波介電特性之結果 75 5-4 綜合討論 82 5-5 結論 89 參考文獻 90 附錄A、 Ba[(Mg1-xCox)1/3Nb2/3]O3 , x = 0 - 0.1之實驗數據統整 93 附錄B、 Ba(Mg1+x Nb2-(2/5)x)1/3O3 , x = -0.05 - 0.05之實驗數據統整 97

    [1] 林勇名,Ba[Mg(1-x)/3Cox/3Nb2/3]O3 陶瓷材料的結構與微波介電性質,國立成功大學資源工程研究所碩士論文 (2008)。
    [2] E. KOGA, H. MORIWAKE, K. KAKIMOTO and H. OHSATO, “Influence of Composition Deviation from Stoichiometric Ba(Zn1/3Ta2/3)O3 on Superlattice Ordering and Microwave Quality Factor Q,” J. Ceram. Soc. Jpn., 113, [2], 172-178 (2005).
    [3] E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, H. Ohsato, “Large Q factor variation within dense, highly ordered Ba(Zn1/3Ta2/3)O3 system,” J. Eur. Ceram. Soc., 26 (2006) 1961–1964.
    [4] E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, H. Ohsato, “Order-disorder transition and its effect on microwave quality factor Q in Ba(Zn1/3nNb2/3)O3 system.” J. Electroceram. (2006) 17:375-379.
    [5] A. Veres, S. Marinel, M. Pollet, “Physical properties of BaMg1/3Nb2/3O3- BaCo1/3Nb2/3O3 solid solutions.” J. Phys. Chem. Solids., 67 (2006) 822-827.
    [6] 鄭雅芳,鈦氧化合物之晶體結構與介電性質及Ba1-xCax(Mg1/3Nb2/3)O3陶瓷材料之結構與微波介電性質,國立成功大學資源工程研究所碩士論文 (2005)。
    [7] F. Galasso, Structure, Properties and Preparation of Perovskite-type Compounds, Pergamon, New York, 1969.
    [8] F. Galasso, J. Pyle, Inorg. Chem. 2 (1963) 482.
    [9] F. Galasso, J. Pyle, J. Phys. Chem. 67 (1963) 1561.
    [10] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
    [11] H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,” Bull. Chem. Soc. Jpn., 60, 3433-3434 (1987).
    [12] M. A. Akbas, P. K. Davies, “ Ordering-Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3-BaZrO3 System.” J. Am. Ceram. Soc, 81 [3] 670-676 (1998).
    [13] I. Molodetsky, P. K. Davies, “ Effect of Ba(Yi1/2Nb1/2)O3 and BaZrO3 on cation order and properties of Ba(Co1/3Nb2/3)O3 microwave ceramics.” J. Eur. Ceram. Soc. 21 (2001) 2587-2591.
    [14] Endo, K., Fujimoto, K. and Murakawa, K., “Dielectric properties of ceramics in BaCo1/3Nb2/3O3- BaZn1/3Nb2/3O3 solid solutions.” J. Am. Ceram. Soc., 1987, 70(9), C215-C218.
    [15] Shannon, R. D., “Dielectric Polarizabilities of Ions in Oxides and Fluorides,” J. Appl. Phys., 73, 348-366 (1993).
    [16] A. J. Bosman and E. E. Havinga, “Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,” Phys. Rev., 129, [4], 1593–1600 (1963).
    [17] 吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會 (1996)。
    [18] 余樹楨,晶體之結構與性質,國立編譯館 (1989)。
    [19] C. H. Lu, and C. C. Tsai, “Reaction Kinetics, Sintering Characteristics, and Ordering Behavior of Microwave Dielectrics: Barium Magnesium Tantalite,” J. Mater. Res., 11, 1219–1227 (1996).
    [20] 吳天傑,Ba(Mg1/3Nb2/3)O3與Ba(Co1/3Nb2/3)O3陶瓷材料之製備、結構與微波介電性質,國立成功大學資源工程研究所碩士論文(2008)。
    [21] N. SETTER, L. E. CROSS, “The contribution of structural disorder
    to diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15, 2478-2482 (1980).
    [22] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).
    [23] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
    [24] 邱碧秀:電子陶瓷材料 徐式基金會出版, p.81,1997。
    [25] W. E. Courtney, ”Analysis and Evaluation of a Method of Measuring
    the Complex Permittivity and Permeability of Microwave Insulators ,” IEEE. Trans. MTT,Vo1. MTT-18, 476-485 (1970).
    [26] S. Janaswamy , G. S. Murthy , E. D. Dias , V. R. K. Murthy,
    “Structure analysis on the Ba3Mg(Ta1_xNbx)2O9 ceramics:Coexistence of order and disorder,” Mater. Res. Bull, 43, 655-644 (2008).
    [27] J. H. PAIK, S. NAHM, J. D. BYLIN, M. H. KIM, H. J. LEE, “The effect
    of Mg deficiency on the microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics,” J. Mater. Sci. Lett., 17 (1998) 1777-1780.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE