簡易檢索 / 詳目顯示

研究生: 蔡佳軒
Tsai, Chia-Hsuan
論文名稱: 左式-,右式-聚乳酸與水溶性高分子聚氧化乙烯 混摻系統球晶形貌之晶板自組裝: 膜厚與旋光性之影響
Lamellar Assembly in Spherulitic Morphology of Poly(L-lactic acid) and Poly(D-lactic acid) Blending with Poly(ethylene oxide): Effects of Thickness and Chirality
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 上蓋效應膜厚旋光性聚乳酸
外文關鍵詞: cover effect, film thickness, chirality, poly(L-lactic acid)
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用原子力顯微鏡(atomic-force microscopy,AFM)、環境式掃描電子顯微鏡(environmental scanning electron microscopy,ESEM),偏光顯微鏡 (polarized optical microscopy,POM)來探討兩成份摻合系統聚氧化乙烯 [poly(ethylene oxide),PEO]/高分子量─左式聚乳酸 [poly(L-lactic acid), PLLA] 與聚氧化乙烯 [poly(ethylene oxide),PEO]/右式聚乳酸 [poly(D-lactic acid),PDLA]之球晶形貌、晶板微結構、成長機制等分析,並觀察上蓋效應、膜厚與旋光性對晶體所造成的影響。
    本研究利用熔融結晶的方式觀察此PEO/ PLLA與PEO/PDLA混摻系統,首先利用玻片作為上蓋觀察球晶形貌的影響,結果顯示有加上蓋之樣品於Tc=120°C其形貌在不同組成下皆呈現環帶狀球晶,其原因為PEO及PLLA(PDLA)表面自由能不同所致。接著,觀察當膜厚較厚時,生成較規則的螺旋狀環帶球晶,且PEO/ PLLA與PEO/PDLA旋轉方向分別為逆時針與順時針;當膜厚較薄時,則生成樹枝狀結晶,依彎曲方向來區別則是S形與Z形,判斷此現象是因為chirality的差異所致;接著,為了更清楚看到PLLA(或PDLA)晶板排列方式,將樣品水洗蝕刻後,則透過SEM針對摻合比例為80/20在120°C下結晶的樹枝狀結晶與環帶球晶作斷裂面的觀察。由樹枝狀結晶可發現其主幹與枝幹的lamella皆已edge-on的方式排列;而環帶狀球晶之晶板則是以週期性波浪狀的方式連續排列但卻非常不規則,且依球晶形貌彎曲方向,推論聚乳酸chirality之關係、PEO的存在、膜厚等皆為造成此形貌的重要因素。

    Effects of cover, film thickness and chirality in poly(ethylene oxide)/poly(L-lactic acid) (PEO/PLLA) and poly(ethylene oxide)/poly(D-lactic acid) (PEO/PDLA) blend systems were observed by polarized optical microscopy (POM), scanning electron microscopy (SEM), atomic-force microscopy (AFM). This study was focused on the ring-banded and dendritic spherulites crystallized at 120 °C with different thickness in PEO/PLLA (80/20) and PEO/PDLA (80/20) blends. From melt-crystallization, the ring-banded pattern always showed in the samples with cover in different compositions at Tc=120°C. The phenomenon was caused by the different surface energy of PEO and PLLA (PDLA). Another part is the observation of spherulitic morphology by controlling the film thickness. Ring-banded morphology appeared in thicker films, while the dendrite crystals were obtained in thinner films. Banded spherulite of PLLA and PDLA formed at Tc=120°C shows counter-clockwise and clockwise rotations, respectively, attributed to the opposite molecular chirality. The lamellae of dendritic spherulites formed at Tc=120°C exhibit the sense of curvature which is S-shaped for PLLA, but Z-shaped for PDLA. The lamellar arrangement and orientation were further investigated by fracturing across the PEO/ PLLA (80/20) and PEO/PDLA (80/20) blends samples then removing the PEO content. Lamellae in PLLA and PDLA banded spherulites in thicker films show loose but continuous lamellar arrangement, periodically waving from edge-on to flat-on lamellae across ridge to valley regions in radial direction. For dendritic morphology in thinner films, the main branch and side branch of the spherulite were aggregated with edge-on lamellae. The result indicating that the molecular chirality, the existence of PEO, film thickness and so forth were the important factors leading to these spherulitic morphology.

    第一章 簡介 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方向 2 第二章 文獻回顧及相關原理 4 2.1 偏光顯微鏡與高分子球晶之理論 4 2.2 環帶狀球晶之生成 6 2.2.1 晶板扭轉機制(lamellar twisting) 7 2.2.2 Rhythmic growth 14 2.2.3 殼層生長(shell model) 16 2.3 聚乳酸相關研究 17 2.4 聚氧化乙烯之相關研究 20 第三章 實驗 23 3.1 實驗所使用之高分子及溶劑 23 3.2 實驗試樣之製備 24 3.3 實驗所用之儀器 25 第四章 結果與討論 27 4.1 PEO/PLLA摻合系統 27 4.2 結晶晶型與形貌分析 (膜厚40~50μm) 27 4.2.1 在自由表面下(free surface)生長之球晶 27 4.2.2 在限制表面下(confined surface)生長之球晶 29 4.2.3 上蓋效應 30 4.3 旋光性及膜厚效應 44 4.3.1 S型與Z形之Dendrite結晶 44 4.3.2 逆時針與順時針旋轉之環帶球晶 56 4.3.3 旋光性與膜厚 58 第五章 結論 71 參考文獻 73 附錄 80

    參考文獻
    [1] H. Pistner, R. Gutwald, R. Ordung, J. Reuther, and J. Muhling, " Poly(l-lactide): a long-term degradation study in vivo: I. Biological results," Biomaterials, vol. 14, pp. 671-677, 1993.
    [2] H. Pistner, H. Stallforth, R. Gutwald, J. Muhling, J. Reuther, and C. Michel, " Poly(l-lactide): a long-term degradation study in vivo: Part II: physico-mechanical behaviour of implants," Biomaterials, vol. 15, pp. 439-450, 1994.
    [3] J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. Debruijn, and A. J. Pennings, " In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles," Biomaterials, vol. 16, pp. 267-274, 1995.
    [4] P. Mainil-Varlet, S. Gogolewski, and P. Nieuwenhuis, "Long-term soft tissue reaction to various polylactides and their in vivo degradation," Journal of Materials Science: Materials in Medicine, vol. 7, pp. 713-721, 1996.
    [5] P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, "Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate," Journal of Materials Science, vol. 19, pp. 2781-2794, 1984.
    [6] G. Ding and J. Liu, "Morphological varieties and kinetic behaviors of poly(3-hydroxybutyrate) (PHB) spherulites crystallized isothermally from thin melt film," Colloid and Polymer Science, vol. 291, pp. 1547-1554, 2013.
    [7] A. Reed and D. Gilding, " Biodegradable polymers for use in surgery — poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation," Polymer, vol. 22, pp. 494-498, 1981.
    [8] A. G. Mikos, Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer, "Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation," Journal of Biomedical Materials Research, vol. 27, pp. 183-189, 1993.
    [9] E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, " Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning," Journal of Macromolecular Science, Part A, vol. 38, pp. 1231-1243, 2001.
    [10] H. Huatan, J. Collett, D. Attwood, and C. Booth, "Preparation and characterization of poly (ε-caprolactone) polymer blends for the delivery of proteins," Biomaterials, vol. 16, pp. 1297-1303, 1995.
    [11] L. A. Henderson, Y. Y. Svirkin, R. A. Gross, D. L. Kaplan, and G. Swift, "Enzyme-catalyzed polymerizations of epsilon-caprolactone: Effects of initiator on product structure, propagation kinetics, and mechanism," Macromolecules, vol. 29, pp. 7759-7766, 1996.
    [12] A. Wurm, D. Lellinger, A. A. Minakov, T. Skipa, P. Pötschke, R. Nicula, et al., "Crystallization of poly (ε-caprolactone)/MWCNT composites: A combined SAXS/WAXS, electrical and thermal conductivity study," Polymer, 2014.
    [13] E. Blümm and A. Owen, "Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/poly (L-lactide) blends," Polymer, vol. 36, pp. 4077-4081, 1995.
    [14] M. L. Focarete, M. Scandola, P. Dobrzynski, and M. Kowalczuk, "Miscibility and Mechanical Properties of Blends of (l)-Lactide Copolymers with Atactic Poly(3-hydroxybutyrate)," Macromolecules, vol. 35, pp. 8472-8477, 2002.
    [15] U. S. Kestur, H. Lee, D. Santiago, C. Rinaldi, Y.-Y. Won, and L. S. Taylor, "Effects of the Molecular Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization Kinetics of a Small Drug Molecule," Crystal Growth & Design, vol. 10, pp. 3585-3595, 2010.
    [16] S. Nurkhamidah and E. M. Woo, "Cracks and Ring Bands of Poly(3-hydroxybutyrate) on Precrystallized Poly(l-lactic acid) Template," Industrial & Engineering Chemistry Research, vol. 50, pp. 4494-4503, 2011.
    [17] J.-C. Chaung and H. Morawetz, "Copolymers of Hydrophilic and Hydrophobic Monomers. Benzene and Water Vapor Sorption Equilibria by Random Copolymers of Styrene and Acrylamide," Macromolecules, vol. 6, pp. 43-47, 1973.
    [18] T. K. Mandal and E. M. Woo, "Marginal miscibility and solvent-dependent phase behavior in solution-blended poly(vinyl methyl ether)/poly(benzyl methacrylate)," Macromolecular Chemistry and Physics, vol. 200, pp. 1143-1149, 1999.
    [19] C.-P. Chiang and E. M. Woo, "Solvent effects on phase behavior with false UCST in blends of PVPh with aliphatic polyesters," European polymer journal, vol. 42, pp. 1875-1884, 2006.
    [20] C. Landry, H. Yang, and J. Machell, "Miscibility and mechanical properties of a ternary polymer blend: polystyrene/polycarbonate/tetramethyl polycarbonate," Polymer, vol. 32, pp. 44-52, 1991.
    [21] T. A. Callaghan and D. R. Paul, "Interaction energies for blends of poly(methyl methacrylate), polystyrene, and poly(.alpha.-methylstyrene) by the critical molecular weight method," Macromolecules, vol. 26, pp. 2439-2450, 1993.
    [22] M. Coleman and E. Moskala, "FTi.r. studies of polymer blends containing the poly(hydroxy ether of bisphenol A) and poly(ε-caprolactone)," Polymer, vol. 24, pp. 251-257, 1983.
    [23] A. Eisenberg and M. Hara, "A review of miscibility enhancement via ion-dipole interactions," Polymer Engineering & Science, vol. 24, pp. 1306-1311, 1984.
    [24] Z. Qiu, T. Ikehara, and T. Nishi, "Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide)," Polymer, vol. 44, pp. 2799-2806, 2003.
    [25] Y.-X. Liu and E.-Q. Chen, "Polymer crystallization of ultrathin films on solid substrates," Coordination Chemistry Reviews, vol. 254, pp. 1011-1037, 2010.
    [26] T. Kyu, H.-W. Chiu, A. Guenthner, Y. Okabe, H. Saito, and T. Inoue, "Rhythmic growth of target and spiral spherulites of crystalline polymer blends," Physical review letters, vol. 83, p. 2749, 1999.
    [27] Y. Li, H. Huang, T. He, and Z. Wang, "Rhythmic Growth Combined with Lamellar Twisting Induces Poly(ethylene adipate) Nested Ring-Banded Structures," ACS Macro Letters, vol. 1, pp. 154-158, 2011.
    [28] J. Schultz, "Effect of specimen thickness on crystallization rate," Macromolecules, vol. 29, pp. 3022-3024, 1996.
    [29] J. M. Escleine, B. Monasse, E. Wey, and J. M. Haudin, "Influence of specimen thickness on isothermal crystallization kinetics. A theoretical analysis," Colloid and Polymer Science, vol. 262, pp. 366-373, 1984.
    [30] H. Marubayashi, T. Nobuoka, S. Iwamoto, A. Takemura, and T. Iwata, "Atomic Force Microscopy Observation of Polylactide Stereocomplex Edge-On Crystals in Thin Films: Effects of Molecular Weight on Lamellar Curvature," ACS Macro Letters, vol. 2, pp. 355-360, 2013.
    [31] D. Maillard and R. E. Prud’homme, "Differences Between Crystals Obtained in PLLA-Rich or PDLA-Rich Stereocomplex Mixtures," Macromolecules, vol. 43, pp. 4006-4010, 2010.
    [32] H.-M. Ye, J.-S. Wang, S. Tang, J. Xu, X.-Q. Feng, B.-H. Guo, et al., "Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer," Macromolecules, vol. 43, pp. 5762-5770, 2010.
    [33] http://www.microscopyu.com/articles/polarized/polarizedintro.html
    [34] E. Murayama. (2002, Optical Properties of Ringed Spherulites. Available: http://www.op.titech.ac.jp/lab/okui/murayam/ringed_en.pdf
    [35] A. G. Shtukenberg, Y. O. Punin, A. Gujral, and B. Kahr, "Growth Actuated Bending and Twisting of Single Crystals," Angewandte Chemie International Edition, vol. 53, pp. 672-699, 2014.
    [36] H. D. Keith and W. Y. Chen, "On the origins of giant screw dislocations in polymer lamellae," Polymer, vol. 43, pp. 6263-6272, 2002.
    [37] J. Xu, B.-H. Guo, Z.-M. Zhang, J.-J. Zhou, Y. Jiang, S. Yan, et al., "Direct AFM Observation of Crystal Twisting and Organization in Banded Spherulites of Chiral Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)," Macromolecules, vol. 37, pp. 4118-4123, 2004.
    [38] D. Patel and D. C. Bassett, "On the formation of S-profiled lamellae in polyethylene and the genesis of banded spherulites," Polymer, vol. 43, pp. 3795-3802, 2002.
    [39] A. Toda, M. Okamura, K. Taguchi, M. Hikosaka, and H. Kajioka, "Branching and Higher Order Structure in Banded Polyethylene Spherulites," Macromolecules, vol. 41, pp. 2484-2493, 2008.
    [40] A. Toda, I. Kojima, and M. Hikosaka, "Melting Kinetics of Polymer Crystals with an Entropic Barrier," Macromolecules, vol. 41, pp. 120-127, 2008/01/01 2007.
    [41] B. Lotz and S. Z. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, vol. 46, pp. 577-610, 2005.
    [42] H. Keith and F. Padden Jr, "Twisting orientation and the role of transient states in polymer crystallization," Polymer, vol. 25, pp. 28-42, 1984.
    [43] Y. O. Punin and A. Shtukenberg, "Autodeformation defects in crystals," ed: St. Petersburg University Press: St. Petersburg, Russia, 2008.
    [44] Y. O. Punin and O. I. Artamonova, "Autodeformation bending of gypsum crystals grown under the conditions of counterdiffusion," Crystallography Reports, vol. 46, pp. 138-143, 2001.
    [45] D. Bassett and A. Hodge, "On lamellar organization in banded spherulites of polyethylene," Polymer, vol. 19, pp. 469-472, 1978.
    [46] D. Bassett and A. Hodge, "On the morphology of melt-crystallized polyethylene. III. Spherulitic organization," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 61-71, 1981.
    [47] D. Bassett and A. Hodge, "On the morphology of melt-crystallized polyethylene I. Lamellar profiles," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 377, pp. 25-37, 1981.
    [48] 王浲德, "磊晶成長對聚左乳酸分子層晶彎曲型態的影響," 成功大學材料科學及工程學系學位論文, pp. 1-55, 2010.
    [49] J. M. Schultz, "Self-induced field model for crystal twisting in spherulites," Polymer, vol. 44, pp. 433-441, 2003.
    [50] H.-M. Ye, J. Xu, B.-H. Guo, and T. Iwata, "Left- or Right-Handed Lamellar Twists in Poly[(R)-3-hydroxyvalerate] Banded Spherulite: Dependence on Growth Axis," Macromolecules, vol. 42, pp. 694-701, 2008.
    [51] I. Saracovan, H. D. Keith, R. S. J. Manley, and G. R. Brown, "Banding in Spherulites of Polymers Having Uncompensated Main-Chain Chirality," Macromolecules, vol. 32, pp. 8918-8922, 1999.
    [52] H. D. Keith and F. J. Padden, "Banding in Polyethylene and Other Spherulites," Macromolecules, vol. 29, pp. 7776-7786, 1996.
    [53] D. C. Bassett, "A critical assessment of unbalanced surface stresses: Some complementary considerations," Polymer, vol. 47, pp. 3263-3266, 4/19/ 2006.
    [54] A. Keller, "Investigations on banded spherulites," Journal of Polymer Science, vol. 39, pp. 151-173, 1959.
    [55] B. Wang, C. Y. Li, J. Hanzlicek, S. Z. D. Cheng, P. H. Geil, J. Grebowicz, et al., "Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales," Polymer, vol. 42, pp. 7171-7180, 2001.
    [56] E. Gunn, R. Sours, J. B. Benedict, and B. Kahr, "Mesoscale Chiroptics of Rhythmic Precipitates," Journal of the American Chemical Society, vol. 128, pp. 14234-14235, 2006.
    [57] A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp, R. Sours, et al., "Bernauer′s Bands," ChemPhysChem, vol. 12, pp. 1558-1571, 2011.
    [58] G. Lugito and E. Woo, "Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy," Colloid and Polymer Science, vol. 291, pp. 817-826, 2013.
    [59] M. Kunz, M. Drechsler, and M. Möller, "On the structure of ultra-high molecular weight polyethylene gels," Polymer, vol. 36, pp. 1331-1339, 1995.
    [60] Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, and T. He, "Rhythmic Growth-Induced Concentric Ring-Banded Structures in Poly(ε-caprolactone) Solution-Casting Films Obtained at the Slow Solvent Evaporation Rate," Macromolecules, vol. 40, pp. 4381-4385, 2007.
    [61] S. Nurkhamidah and E. M. Woo, "Unconventional Non-birefringent or Birefringent Concentric Ring-Banded Spherulites in Poly(L-lactic acid) Thin Films," Macromolecular Chemistry and Physics, vol. 214, pp. 673-680, 2013.
    [62] E. M. Woo, L.-Y. Wang, and S. Nurkhamidah, "Crystal Lamellae of Mutually Perpendicular Orientations by Dissecting onto Interiors of Poly(ethylene adipate) Spherulites Crystallized in Bulk Form," Macromolecules, vol. 45, pp. 1375-1383, 2012.
    [63] L. Xiao, B. Wang, G. Yang, and M. Gauthier, "Poly (Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications," Biomedical Science, Engineering and Technology: InTech, pp. 247-282, 2012.
    [64] P. De Santis and A. J. Kovacs, "Molecular conformation of poly(S-lactic acid)," Biopolymers, vol. 6, pp. 299-306, 1968.
    [65] J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, and B. Lotz, "The frustrated structure of poly(l-lactide)," Polymer, vol. 41, pp. 8921-8930, 2000.
    [66] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, and P. Zugenmaier, "Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers," Macromolecules, vol. 23, pp. 634-642, 1990.
    [67] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, and B. Lotz, "Epitaxial crystallization and crystalline polymorphism of polylactides," Polymer, vol. 41, pp. 8909-8919, 2000.
    [68] L. TINGTING, "Structure-property relationship of crystalline poly (lactic acid) s: DFT/DFPT studies and applications," 2011.
    [69] T. Kasuga, Y. Ota, M. Nogami, and Y. Abe, "Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers," Biomaterials, vol. 22, pp. 19-23, 2000.
    [70] C.-C. Chao, C.-K. Chen, Y.-W. Chiang, and R.-M. Ho, "Banded Spherulites in PS−PLLA Chiral Block Copolymers," Macromolecules, vol. 41, pp. 3949-3956, 2008.
    [71] D. Maillard and R. E. Prud'homme, "Crystallization of Ultrathin Films of Polylactides: From Chain Chirality to Lamella Curvature and Twisting," Macromolecules, vol. 41, pp. 1705-1712, 2008.
    [72] L. Chang and E. M. Woo, "Effect of a Miscible Polymeric Diluent on Complex Formation between Isotactic and Syndiotactic Poly(methyl methacrylate)," Industrial & Engineering Chemistry Research, vol. 48, pp. 3432-3440, 2009.
    [73] V. Ferreiro, J. F. Douglas, J. Warren, and A. Karim, "Growth pulsations in symmetric dendritic crystallization in thin polymer blend films," Physical Review E, vol. 65, p. 051606, 2002.
    [74] P. Pedrosa, J. A. Pomposo, E. Calahorra, and M. Cortazar, "On the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/polyether blends," Macromolecules, vol. 27, pp. 102-109, 1994.
    [75] K. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer Bulletin, vol. 62, pp. 225-235, 2009.
    [76] T. Ikehara, H. Kurihara, and T. Kataoka, "Effect of poly(butylene succinate) crystals on spherulitic growth of poly(ethylene oxide) in binary blends of the two substances," Journal of Polymer Science Part B: Polymer Physics, vol. 47, pp. 539-547, 2009.
    [77] C. Nakafuku and M. Sakoda, "Melting and crystallization of poly (L-lactic acid) and poly (ethylene oxide) binary mixture," Polymer journal, vol. 25, pp. 909-917, 1993.
    [78] C. Nakaruku, "Effects of molecular weight on the melting and crystallization of poly (L-lactic acid) in a mixture with poly (ethylene oxide)," Polymer journal, vol. 28, pp. 568-575, 1996.
    [79] 陳宜姿, "聚乳酸與聚氧化乙烯兩結晶型高分子混摻系統之相容性與結晶型態," 成功大學化學工程學系學位論文, pp. 1-67, 2009.
    [80] 謝雅婷, "生物可分解類高分子摻合體於微觀尺度下之自組裝晶板排列," 成功大學化學工程學系學位論文, pp. 1-80, 2011.
    [81] T. Ikehara, Y. Nishikawa, and T. Nishi, "Evidence for the formation of interpenetrated spherulites in poly(butylene succinate-co-butylene carbonate)/poly(l-lactic acid) blends investigated by atomic force microscopy," Polymer, vol. 44, pp. 6657-6661, 2003.
    [82] G. Sun, L.-T. Weng, J. M. Schultz, and C.-M. Chan, "Formation of banded and non-banded poly(l-lactic acid) spherulites during crystallization of films of poly(l-lactic acid)/poly(ethylene oxide) blends," Polymer, vol. 55, pp. 18-1836, 2014.
    [83] G. Sun and C.-M. Chan, "The effects of the low-molecular-weight component on banded spherulites of poly(l-lactic acid)," Colloid and Polymer Science, vol. 291, pp. 1495-1501, 2013.
    [84] Y. T. Hsieh and E. M. Woo, "Lamellar assembly and orientation-induced internal micro-voids by cross-sectional dissection of poly(ethylene oxide)/poly(L-lactic acid) blend," Express Polymer Letters, vol. 7, pp. 396-405, 2013.
    [85] L.-T. Lee, E. M. Woo, and Y.-T. Hsieh, "Macro- and micro-lamellar assembly and mechanisms for unusual large-pitch banding in poly(l-lactic acid)," Polymer, vol. 53, pp. 5313-5319, 2012.
    [86] J. M. García-Ruiz, E. Melero-García, and S. T. Hyde, "Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica," Science, vol. 323, pp. 362-365, 2009.
    [87] A. V. Emelyanenko, "Analytical description for the chiral nematic state in terms of molecular parameters," Physical Review E, vol. 67, p. 031704, 2003.
    [88] S. Nurkhamidah and E. M. Woo, "Oppositely Synchronized Lamellar Bending in Poly (l‐lactic acid) Versus Poly (d‐lactic acid) Blended with Poly (1, 4‐butylene adipate)," Macromolecular Chemistry and Physics, 2014.

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE