簡易檢索 / 詳目顯示

研究生: 陳炫佐
Chen, Hsuan-Tso
論文名稱: 黃酸鹽應用於分離回收光電產業廢料中稀貴金屬之研究
The feasibility of xanthates to separate and recovery rare metals from optoelectronic industry waste
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 137
中文關鍵詞: 黃酸鹽光電產業廢料稀貴金屬
外文關鍵詞: xanthates, optoelectronic industry waste, rare metals
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電產業為台灣重要產業之一,近年來蓬勃發展,衍生出的廢料大都含有稀貴金屬如鉬、銅、銦、鎵和硒等,但往往未被妥善地處理及回收再利用,以TFT-LCD鋁基板蝕刻廢液為例,其含有高濃度磷酸,產生廢液不僅含高濃度的金屬鉬及鋁且pH值極低,而薄膜太陽能電池濺鍍靶材為半導體、光電業常用的一種濺鍍材料,廢靶材通常含有高純度的銅、銦、鎵及硒,本研究從靶材酸溶及金屬分離兩個部分探討由TFT-LCD鋁基板蝕刻廢液(含鋁及鉬)及薄膜太陽能電池CIGS濺鍍廢靶材中分離回收金屬之可行性,廢靶材首先以硫酸及鹽酸試劑進行酸溶,目的是將銅、銦及鎵溶於溶液中,以利後續金屬分離回收試驗,接續以黃酸鹽應用於靶材酸溶液與TFT-LCD鋁基板蝕刻廢液中,調整參數條件,達到銅、銦、鎵、硒與鋁、鉬分離之可行性。
    實驗結果得知,CIGS廢靶材破碎過篩後,利用酸溶的方式,透過6N硫酸試劑,加入1mL過氧化氫,在溫度140℃,反應時間2小時,可得銅、銦及鎵酸溶效率分別為98.9%、99.8%及99.4%,硫酸因電子轉移能力佳,能將大部分硒留於固體中,且硫酸試劑中亞硫酸鈉對硒的析出能力為99.9%。索式萃取能有效純化合成CSAX提高其含硫及氮的百分比,CSAX具-CSSH及-C=O官能基團,可於較低的pH值有效分離重金屬,各別分離銅及鉬金屬之效率,可達99.51%及90.84%。在CIGS濺鍍廢靶材酸溶液,最適條件為pH 1、S/M molar ratio=0.5,銅、銦及鎵分離效率分別為97.22%、4.35%及4.56%,後續調整最佳條件pH 5,銦及鎵之沉澱率達約10.58%及99.9%,在TFT-LCD實廠廢液,最適條件為pH 1、S/M molar ratio=0.5,鉬及鋁分離效率分別為90.11%及5.53 %,對銅、銦、鎵、鉬及鋁選擇性分離效果佳。另將TFT-LCD鋁基板蝕刻廢液以溶媒萃取法與螯合劑進行效率比較評析,依試驗結果選用商用萃取劑Alamine 336,其在pH 1最佳的O/A ratio為1:1,鉬及鋁萃取效率分別為98.33%及0.19%,反萃試驗則以殘餘有機相/反萃取劑比為2:1,鉬及鋁反萃取效率分別為95.97%及0.002%,反萃次數5次可達最大濃縮鉬含量1368 mg/L,黃酸鹽效率雖較萃取劑略低些,但其分離效率亦可達到90%分離率,且製作成本低廉許多,故本研究合成之CSAX 黃酸鹽來分離回收金屬是可行且具有潛力的。

    Recently the growth of Optoelectronics industry in Taiwan is very quick. Many precious metals and rare elements, like molybdenum, copper, indium, gallium and selenium, have been used during making process. Wastes from the making process was seldom treated and reused well. It will cause environmental problem. Thin film transistor liquid crystal display etching waste water contain high concentration of phosphoric acid, which pH is very low and too hard too separation metal and another material is CIGS residual target, which is a semiconductor sputtering target to make the thin film solar cell and usually contain purity copper, indium, gallium and selenium. This study was to investigate the TFT-LCD etching solution (containing aluminum and molybdenum), then use the acid reagent to dissolve CIGS residual target and separation the metal. First, use the acid reagent to dissolve copper, indium and gallium, then use Sodium sulfite to separate out selenium. Second, Crosslinked starch-grafted Polyacrylamide co-Sodium Xanthate (CSAX) were synthesized in this study to investigate their feasibility to separate and recover the wastewater from Optoelectronic Industry. CIGS residual target use the acid-soluble way to dissolve, the best condition is 6N sulfuric acid reagent at temperature 140℃ and reaction time 2 hours.The acid soluble efficiency 98.9%, 99.8% and 99.4% for copper, indium and gallium, respectively. Then use CSAX into TFT-LCD etching solution and CIGS acid solution, the best condition is pH 1 and S/M molar ratio 0.5. The separate efficiency 97.22% and 90.11% for copper and molybdenum, respectively.

    目 錄 中文摘要 I 英文摘要 III 誌 謝 VI 目 錄 VIII 表目錄 XI 圖目錄 XIII 第一章 前言 1 1-1研究動機與目的 1 1-2研究內容 2 第二章 文獻回顧 4 2-1 光電產業(Optoelectronics industry) 4 2-1-1光電產業現況 4 2-1-2 TFT-LCD蝕刻製程技術與廢料處置現況 9 2-1-3 CIGS製程技術與廢料處置現況 13 2-2 光電產業所含重金屬 15 2-2-1鉬的特性及應用 15 2-2-2銅的特性及應用 18 2-2-3銦的特性及應用 19 2-2-4鎵的特性及應用 22 2-3廢水中重金屬離子去除方法 23 2-3-1化學沉澱法 23 2-3-2化學混凝法 25 2-3-3碳吸附法 26 2-3-4溶媒萃取法 28 2-3-4-1萃取劑性質 29 2-3-4-2萃取劑種類 29 2-3-4-3稀釋劑選擇及用途 31 2-3-5離子交換法 32 2-4黃酸鹽的介紹及運作機制 33 2-4-1黃酸鹽合成之反應 34 2-4-2交聯澱粉接枝聚丙烯醯胺共鈉黃酸鹽(CSAX) 38 2-4-3抗酸型澱粉黃酸鹽之螯合能力 42 2-5小結 43 第三章 研究材料、設備與方法 45 3-1研究架構與流程 45 3-2研究材料與設備 48 3-2-1研究材料 48 3-2-2實驗設備 49 3-3研究與分析方法 50 第四章 結果與討論 67 4-1 CIGS濺鍍廢靶材酸溶最適條件探討 67 4-1-1鹽酸試劑酸溶效率 68 4-1-2硫酸試劑酸溶處理 74 4-1-3小結 83 4-2抗酸型澱粉黃酸鹽合成及操作條件探討 84 4-2-1 CSAX特性分析 84 4-2-2 模擬廢水試驗 94 4-2-3小結 102 4-3抗酸型澱粉黃酸鹽應用於實廠廢料分離回收稀貴金屬 103 4-3-1 CIGS濺鍍廢靶材酸溶液 103 4-3-2 TFT-LCD鋁基板蝕刻廢液 108 4-3-3小結 110 4-4商用萃取劑與黃酸鹽分離金屬鉬之效率評析 111 4-4-1模擬含鉬廢水參數條件探討 111 4-4-2 TFT-LCD鋁基板蝕刻廢液萃取效率 118 4-4-3小結 123 第五章 結論與建議 125 5-1結論 125 5-2建議 126 參考文獻 128

    參考文獻
    A. A. Atia, A. M. Donia and H. A. Awed, (2008). Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. J Hazard Mater, 155(1-2), 100-108.
    A. Bhattacharya , (2004). Grafting: a versatile means to modify polymersTechniques, factors and applications. Progress in Polymer Science, 29(8), 767-814.
    A.T. Yordanov, J.T. Mague and D.M. Roundhill., (1995). Solvent extraction of divalent palladium and platinum from aqueous solutions of their chloro complexes using an N,N-dimethyldithiocarbamoylethoxy substituted calix arene. Inorg. Chim, Acta 240, 441–446.
    A.W. Bryson and K.A. Dardis, (1980). Treatment od dilute metal effluents in an electrolytic precipitator. Water SA, 6(1), 85-87.
    Ana Marı´a Sastre., Santiago Cahner., & Francisco Jose´ Alguacil., (2000). Extraction of molybdenum(VI) from sulfate solutions by LIX 622. J Chem Technol Biotechnol, 75, 54-58.
    B.D. Cullity and S. R. Stock, (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
    B.R. Sharma, N.C. Dhuldhoya and U.C. Merchant, (2006). Flocculants—an ecofriendly approach. Journal of Polymers and the Environment, 14(2), 195-202.
    Chakraborty, Saswati, Tare and Vinod., (2006). Role of various parameters in synthesis of insoluble agrobased xanthates for removal of copper from wastewater. Bioresource technology, 97(18), 2407-2413.
    Chang, Qing, Hao, Xuekui, & Duan, Lili., (2008). Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment. Journal of hazardous materials, 159(2), 548-553.
    Chassary, Philippe, Vincent, Thierry, & Guibal, Eric., (2004). Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. Reactive and Functional Polymers, 60, 137-149.
    Clair Sawyer, Perry McCarty and Gene Parkin, (1978). Chemistry for environmental engineering and science.
    D. Marani, M. Mezzana, R. Passino and G. Tiravanti, (1981). Treatment of industrial effluents for heavy metal removal using the water soluble starch xanthate process. Proc. Int. Conf. Heavy metal in the environment, Amsterdam, 92-95.
    Donaldson, M. Elsie, (1976). Solvent extraction of metal xanthates. Talanta, 23(6), 417-426.
    H. Hasegawa, I. M.M. Rahman, Y. Egawa, H. Sawai and Z.A. Begum, (2013). Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment. Microchemical Journal, 106, 289–294.
    H. N. Kang, J.Y. Lee and J.Y. Kim, (2011). Recovery of indium from etching waste by solvent extraction and electrolytic refining. Hydrometallurgy, 110(1-4), 120-127.
    H. Reinhart, (1975). Solvent extraction for recovery of metal waste. Chem. Ind., 210-213.
    H.E. Goeller and A. Zucker, (1984). Infinite resource: the ultimate strategy. Science 223, 456.
    Hao, Xuekui, Chang, Qing, Duan, Lili and Zhang, Yongzhi., (2007). Synergetically Acting new Flocculants on the Basis of Starch-graft-Poly (acrylamide)-co-Sodium Xanthate. Starch-Stärke, 59(6), 251-257.
    Hasan Uslu and Ş. İsmail Kırbaşlar., (2009). Investigation of phase equilibria of levulinic acid distribution between aqueous phase to organic phase by Aliquat 336 in different modifiers, J. Chem. Thermodynamics.
    I. Komasawa, T. Otake and Y. Ogawa, (1984). The effects of diluent in the liquid–liquid extraction of copper and nickel using 2-hydroxy-5-nonylbenzophenone oxime. J.Chem.Eng.Japan, 16,377-383.
    J. John, Mcketta , (1986). Encyclopedia of Chemical Processing and Design.
    J. Leja, (1982). Surface chemistry of froth floation. Plenum Press, New York, New York.
    J.R. Dodson , A.J. Hunt, H.L. Parker, Y. Yang and J.H. Clark, (2012). Elemental sustainabilityLTowards the total recovery of scarce metals. Chemical Engineering and Processing:Process Intensification, 51, 69.
    J.W. Patterson, (1981). Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc. Proceeding 36th Annual Industrial Waste Conference, Purdue University, 579-602. Purdue University, West Lafayette, Indiana.
    Japan Oil, Gas and Metals National Corporation (石油天然ガス・金属鉱物資源機構,簡稱JOGMEC), 2010.
    Jin-Young Lee., Jyothi Rajesh Kumar., Ho-Seok Jeon and Joon-Soo Kim, (2010). Extraction and separation of hexavalent molybdenum from acidic sulfate solutions using Alamine 336 as an extractant. Chemical Engineering, 54(1), 27-34.
    K.L. Nash and G.R. Choppin, (1974). The thermodynamics of synergistic solvent extraction of zinc, Nucl. Chem, 36, 189 -192.
    Kh. M. Mostafa., (1997).Synthesis of poly(acrylamide)-starch and hydrolyzed starch graft copolymers as a size base material for cotton textiles. Polymer Degradation and Stability, 55, 125–130.
    Lo.T.C., Baird M.H.I., Hanson C., (1983). Handbook of Solvent Extraction, John Wiley, New York.
    M. Mokmeli, B. Wassink, and D. Dreisinger, (2013). Kinetics study of selenium removal from copper sulfate–sulfuric acid solution. Hydrometallurgy, 139, 13-25.
    M.J. Hudson, (1982). An introduction to some aspects of solvent extraction chemistry in hydrometallurgy. Hydrometallurgy, 9, 149 -168.
    Marı´a A. Morı´s., Fernando V. Dı´ez and Jose´ Coca., (1999). Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA in a rotating disc contactor. Separation and Purification Technology, 17, 173–179.
    MetalPages, 2011.
    Qing Chang, Xuekui Hao and Lili Duan, (2008). Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment. Journal of Hazardous Materials, 159(2-3), 548-553.
    R.E. Wing, W.M. Doane and C.R. Russell, (1975). Insoluble starch xanthate: use in heavy metal removal. Journal of Applied Polymer Science, 19(3), 847-854.
    Rao, S. Ramachandra, (1971). Xanthates and related compounds: M. Dekker.
    S. Chaudhari and V. Tare, (1999). Heavy metal–Soluble starch xanthate interactions in aqueous environments. Journal of Applied Polymer Science, 71(8), 1325-1332.
    S. P. Barik., K. H. Park., P. K. Parhi., D. J. Kim., and C. W. Nam., (2014). Separation and Recovery of Molybdenum from Acidic Solution using LIX 973 N. Separation Science and Technology, 49(5), 647-655.
    S. R. Shukla, G. V. Gopala Rao, and A. R. Athalye., (1993). Improving graft level during photoinduced graft-copolymerization of styrene onto cotton cellulose. Journal of Applied Polymer Science, 49(8), 1423-1430.
    S.E. Bailey , T.J. Olin, R.M. Bricka and D.D. Adrian, (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469-2479.
    Susan Bailey, Trudy Olin, Mark Bricka and Dean Adrian., (1999). A Review of Potentially Low-Cost Sorbents for Heavy metals. Wat. Res, 33(11), 2469-2479.
    T. Koito, M. Tekawa and A. Toyoda, (1998). A novel treatment technique for DMSO wastewater. IEEE Transactions on Semiconductor Manufacturing, 11(1), 3–8.
    T. Ogi, K. Tamaoki, N. Saitoh, A. Higashi and Y. Konishi, (2012). Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae. Biochemical Engineering Journal, 63(15), 129-133.
    T. Sekine, T. Hasegawa, (1977). Solvent Extraction Chemistry: Fundamentals and Applications, Marcel Dekker, New York.
    Tchobanoglous, George, Burton, Franklin L and Stensel, H. David, (2003). Wastewater engineering: treatment and reuse. Metcalf & Eddy. Inc., McGraw-Hill, New York.
    United States Geological Survey(USGS), 2010.
    V. Tare, S. Chaudhari and M. Jawed, (1992). Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water Science & Technology, 26(1-2), 237-246.
    Vidyagauri, V. D. Athawale., (1998). Graft Copolymerization Onto Starch. 3: Grafting of Acrylamide Using Ceric Ion Initiation and Preparation of Its Hydrogels. Starc-Stärke, 50(10), 426-431.
    Z. Sun and W. Forsling, (1997). The degradation kinetic of ethyl-xanthate as a function pf pH in aqueous solution. Minerals Engineering, 10(4), 97-109.
    Zeng Li, and Yong Cheng Chu, (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part II: Separation and purification. Hydrometallurgy, 98(1), 10-20.
    方鴻源,電子業廢棄鎵金屬回收之研究,國立雲林科技環境與安全衛生工程系,碩士論文,2005。
    中華映管股份有限公司,http://www.cptt.com.tw
    友達光電網站,http://www.auo.com.tw
    市場研究機構displaybank網站,www.displaybank.com
    石濤,環境化學,2007。
    行政院環境保護署,「事業廢棄物查核與輔導改善」第四年專案工作計劃 事業廢棄物行業製程技術稽查手冊-光電材料及元件製造業,台北市,2004。
    行政院環境保護署,毒性化學物質管理宣導手冊-認識生活環境中毒性物質,2013。
    伍贈玲,銦的資源、應用與分離回收技術研究進展,銅業工程,第一0七卷,第一期,2011。
    吳俊毅、陳偉聖、黃蘭芳、蕭庭哲、申永輝、蔡敏行,LCD含銦廢料與廢液資源化處理技術之可行性評估。,工業污染防治,第一一三期,2010。
    李清華、蔡尚林、洪崇欽、 蕭孟官,砷化鎵廢棄物資源再生方法,專利,2003。
    李雯雯,薄膜太陽光電設備發展概述,工研院IEK, 2008。
    林明獻,太陽電池技術入門,2008 。
    林偉凱、曾婉如,戰略關鍵金屬之價值鏈應用與商機探索-銦、鎵、釩、鋰,IT IS智網,S104,2010。
    林凱隆、張文凱、官建丞,TFT-LCD廢玻璃替代部分黏土燒製環保地磚之研究,工業污染防治,第1~17頁,2008。
    侯曉川、肖連生、高叢塏、張啟修、張貴清、曹佐英、李青剛,從鎳鉬礦冶煉煙塵浸出液中還原硒的熱力學應用,中國有色金屬學報,第二十卷,第十二期,第2431~2437頁,2010。
    徐向超,世界銦價格趨勢分析,科技情報開發與經濟,第二十二卷,第九期,2012。
    連建洲、陳海瑞、李重慶,銅銦鎵硒(CIGS)薄膜型太陽能電池之製程殘靶綜合回收技術先期研發計畫,環保科技園區研究補助案成果發表簡報,2010。
    高瑛紜、劉蘭萍、王義基,液晶面板製造業廢棄物資源化現況評析,綠基會通訊,2008。
    高遠、吳昊、顧珩、王繼民,從含硒廢料中回收製備高純硒,有色金屬(冶煉部分)3期,2009。
    財團法人光電科技工業協進會,2003。
    財團法人光電科技工業協進會,2011。
    郭哲瑋、張仁銓、謝東坡、莊佳智、蔡松雨,銅銦鎵硒(CIGS)太陽電池濺鍍製程技術發展與現況,工業材料雜誌,第101~109頁,2010。
    張益國,黃酸鹽程序去除銅離子及其生成物之穩定性,國立成功大學環境工程研究所,博士論文,2003。
    曾才榮,太陽能電池技術專利分析與研究,國立政治大學科技管理研究所,碩士論文,2008。
    黃銀雄,電子業廢棄鎵金屬回收之研究,國立雲林科技大學環境與安全衛生工程研究所,碩士論文,2005。
    楊先仁、黃啟輝、林美素、周育徵、施修正、陳麗娟,鎵純化精煉技術之開發,遠東學報,第二十九卷,第三期,2012。
    雷碧麗,黃酸鹽應用於去除光電產業廢水中銅、鉬及鋅之研究。國立成功大學環境工程所,碩士倫文,2013。
    經濟部工業局,資源化工業輔導計畫,2002。
    經濟部,產業技術白皮書-綠能科技領域,2011。
    群創光電網站,http://www.innolux.com
    劉軍身、李桂華,螯合型樹脂分離回收鎵和銦的研究進展,稀有金屬與硬質合金,第三十三卷,第四期,2005。
    蔡世兵,從高品位硒、碲廢料中分離回收硒和碲,濕法冶金,第二十七卷,第一期,2008。
    蔡宏安,淺談銅銦鎵硒薄膜太陽能電池薄膜,經濟部清潔生產與環保技術,第八十八期,2011。
    蔡德華,液態離子交換劑之介紹,1999。
    魏先紅、鄒光中、郭春花,硒與鐵氧體共沉澱的研究,遼寧化工,第三十四卷,第七期,2005。

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE