| 研究生: |
楊孟綸 Yang, Meng-Lun |
|---|---|
| 論文名稱: |
雲母含量對液化後砂土殘餘強度之研究 Effects of Mica Content on Residual Strength of Liquefied Sand |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 顆粒性土壤 、雲母細粒料含量 、液化阻抗 、液化後殘餘強度 、靜態三軸試驗 、動態三軸試驗 |
| 外文關鍵詞: | granular soil, mica fines content, liquefaction resistance, residual strength, triaxial compression test, dynamic triaxial test |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砂土之液化後不排水殘餘強度為進行液化土層穩定性分析與設計時之重要參數,本研究以渥太華砂與雲母兩種不同顆粒粒徑之土壤為材料,利用濕搗法製作試體,在控制土壤相對密度相同之條件下,進行動態與靜態三軸壓縮試驗,探討低塑性細粒料含量對土壤液化後殘餘強度之影響。研究結果顯示,在相對密度40%情況下,雲母含量在30%前與超過50%後,試體之液化阻抗與液化後殘餘強度隨著雲母含量的增加而降低,而雲母含量30%至50%之間,液化阻抗與液化後殘餘強度隨著雲母含量的增加而增加。此外,比較動態與靜態三軸試驗可發現兩者具有一致性之結果,代表試體經過動態載重其不排水殘餘強度並不會受太大影響。
The undrained residual strength of liquefied sands is an important parameter for stability analysis and engineering design. A series of undrained monotonic and dynamic triaxial compression tests were conducted on reconstituted specimens made of Ottawa sand and mica fines at a constant relative density to study the effects of mica content on residual strength of liquefied sands. Testing results reveal that the liquefaction resistance and undrained residual strength decreases with increasing mica content for mica content less than 30% and more than 50%. For mixtures with mica content between 30% and 50%, the liquefaction resistance and undrained residual strength increases with increasing mica content. In addition, the undrained residual strength of sand-mica mixtures does not significantly affect by dynamic loading prior to initial liquefaction.
許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,碩士論文,國立成功大學土木工程學系,台南 (2003)。
吳俊賢,「利用環形剪力試驗儀探討南部軟岩殘餘強度特性」,碩士論文,國立成功大學土木工程學系,台南 (2005)。
洪明琳,「以反覆單剪試驗探討含細粒料砂土其不同孔隙參數與液化強度之關係」,碩士論文,國立暨南國際大學土木工程學系,南投 (2005)。
黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程學系,新竹 (2007)。
曾章凱,「 狀態下礫石-砂土混合物之液化行為探討」,碩士論文,國立暨南大學土木工程學系,南投 (2008)。
李政融,「動力三軸試驗探討含細料粉質砂土之動態行為」,碩士論文,國立成功大學土木工程學系,台南 (2010)。
李政忠,「雲母細粒料含量對顆粒性土壤極限狀態參數之影響」,碩士論文,國立成功大學土木工程學系,台南 (2011)。
Baziar, M. H., and Dobry, R., “Residual Strength and Large-Deformation Potential of Loose Silty Sands,” Journal of Geotechnical Engineering, ASCE, Vol.121, No. 12, pp.896-906 (1995).
Finn, W. D. L., “Liquefaction Potential: Developments Since 1976,” Proceedings of the First International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Vol. 2, pp. 655-681 (1981).
Hazirbaba, K., “Pore Pressure Generation Characteristics of Sands and Silty Sands:A
Strain Approach.” Ph. D. Dissertation, University of Texas at Austin (2005).
Huang, Y. T., Huang, A. B., Kuo, Y. C., and Tsai, M. D., “A Laboratory Study on the Undrained Strength of a Silty Sand from Central Western Taiwan,” Soil Dynamics and Earthquake Engineering, Vol. 24, No. 9-10, pp. 733-743 (2004).
Hyodo, M., Murata, H., Yasufuku, N., and Fujii, T., “Undrained Cyclic Shear Strength and Residual Shear Strain of Saturated Sand by Cyclic Triaxial Tests,” Soils and Foundations, Vol.31, No.3, pp.60-76 (1991).
Idriss, M. and Boulanger, R. W., “SPT- and CPT-based Relationships for the Residual Shear Strength of Liquefied Soils,” Poc. 4th International Conference on Earthquake Geotechnical Engineering, 25-28 June 2007, Thessaloniki, Greece. Ishihara Lecture (2007).
Ishihara, K., “Soil Behaviour in Earthquake Geotechnics,” Clarendon Press (Oxford and New York), pp. 208-245 (1996).
Kokusho, T., Hara, T., and Hiraoka, R., ” Undrained Shear Strength of Granular Soils with Different Particle Gradations,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 6, pp.621-629 (2004).
Kramer, S. L.,” Geotechnical Earthquake Engineering,” Prentice Hall, Inc., pp. 409-417 (1996).
Lade, P. V., Liggio, C. D., and Yamamuro, J. A., “Effects of Nonplastic Fines on Minimum and Maximum Void Ratios of Sand, ” Geotechnical Testing Journal, Vol. 21, No. 4, pp. 336-347 (1998).
Marcuson, W. F., “Definition of Term Related to Liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 565-588 (1978).
Mulilis, J. P., (1975) “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Journal of the Geotechnical Engineering Division, Vol. 103, No. 2, pp. 91-108 (1975).
Naeini, S. A., and Baziar, S. A., “Effect of Fines Content on Steady-State Strength of mixed and layered samples of a sand,” Soil Dynamics and Earthquake Engineering, Vol.24, No.3, pp. 181-187 (2004).
Poulos, S. J., Castro, G., and France, J. W., “LiquefactionEvaluation Procedure,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 6, pp. 772-791 (1985).
Seed, H. B., and Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134 (1966).
Seed, H. B., Mori, K., and Chan, C. K., “Influence of Seismic History on the Liquefaction Characteristics of Sands,” Report EERC 75-25, Earthquake Engineering Research Center, University of California, Berkeley, 21 pages (1975).
Seed, H. B., Martin, P. P., and Lysmer, J., “The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction,” Earthquake Engineering Research Center, Report No. UCB/EERC 75-26 (1975a).
Seed, H. B., “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division,” Vol. 105, No. 2, pp. 201-255 (1979).
Seed, R. B., and Harder, L. F., “SPT-based Analysis of Cyclic Pressure Generation and Uundrained Residual Strength,” Proceedings, H. Bolton Memorial Symposium, University of California, Berkeley, Vol. 2, pp. 351-376 (1990).
Skempton, A. W., ”Long-Term Stability of Clay Slopes,” Geotechnique, Vol. 14, Issue 2, pp. 77-102 (1964).
Vaid, Y. P., and Thomas, J., “Liquefaction and Postliquefaction Behavior of Sand ,” Journal of Geotechnical Engineering, ASCE, Vol.121, No. 2, pp.163-173 (1995).
Vaid, Y. P., Sivathayalan, S., and Stedman, D., “Influence of Specimen -Reconstituting Method on the Undrained Response of Sand.” ASTM Geotechnical Testing Journal, Vol. 22, No. 3, pp. 187-195 (1999).
Vaid, Y. P., and Sivathayalan, S., “Static and Cyclic Liquefaction Potential of Fraser Delta Sand in Simple Shear and Triaxial Tests,” Canadian Geotechnical Journal, Vol. 33, No. 2, pp. 281-289 (1996).
Yasuhara, K., Murakami, S., Song, B. W., Yokokawa, S., and Hyde, A. F. L., “Postcyclic Degradation of Strength and Stiffness for Low Plasticity Silt,” Journal of Geotechnical Engineering, ASCE, Vol. 129,No.8, pp.756-769 (2003).
Youd, T. L., and Idriss, I. M. et al., “Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.10, pp.817-833 (2001).
Yoshimi, Y., and Tokimatsu, K., ” Settlement of Buildings on Saturated Sand During Earthquakes,” Journal of Soils Foundations, Vol. 17, No. 1, pp. 23-38 (1977).
Yoshimine, M., and Ishihara, K.,” Flow Potential of Sand During Liquefaction,” Journal of Soils and Foundations, Vol. 38, No. 3, pp. 189-198 (1998).
Yoshimine, M., Robertson, R. K., and Wride C. E., ” Undrained Shear Strength of Clean Sands to Trigger Flow Liquefaction,” Canadian Geotech. J., Ottawa, Vol. 36, No.5, pp. 891-906 (1999).