研究生: |
張簡睿豪 Chang Chien, Jui-Hao |
---|---|
論文名稱: |
運用WIO表的架構為基礎發展循環減碳評估模式與塑膠循環多情境分析 Waste input-output model for Taiwan’s carbon reduction potential of the policy goals for plastic circulation and multi-scenario analysis |
指導教授: |
陳必晟
Chen, Pi-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 廢棄物投入產出分析 、溫室氣體 、循環經濟 、塑膠循環 、塑膠包裝 |
外文關鍵詞: | Waste input-output analysis, Greenhouse gases, Circular economy, plastic circulation, plastic packaging |
相關次數: | 點閱:106 下載:61 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球暖化問題日益嚴重,世界各國開始重視溫室氣體減量議題,希望能減緩氣候變遷的速度。循環經濟藉由建立封閉供應鏈來減少原物料開採、加工製造所需之能源,在產品壽命結束後也可以藉由回收系統重新投入產業鏈,大幅減少產品生命週期前後端的能源消耗,因此循環經濟也被認定是一個具有溫室氣體減量潛力的方法。在諸多物質中,塑膠價格便宜且功能廣泛,是帶動經濟發展不可或缺的物質之一,在循環經濟上,塑膠回收再利用不僅可以減少溫室氣體排放,塑膠再生料也可作為塑膠原料投入產業中,因此塑膠也被認為是具有循環減碳的物質。循環經濟涉及產業經濟與廢棄物回收面相,須以較全面的視野來檢視整個產業系統和廢棄物之間的關係。本研究希望以廢棄物投入產出的觀點評估不同塑膠循環情境的減碳潛力,藉由整合產業經濟數據和廢棄物流動數據,建立廢棄物投入產出模型,並結合溫室氣體排放數據評估產業的溫室氣體排放量。因台灣多數原物料仰賴進口,本研究建立之模型亦利用產業關聯程度矩陣,進口品和國產品佔經濟產出的比例,以區分成國內和國外的減碳效益。本研究情境設定分為兩個區塊,以環保署的塑膠包裝循環減量目標和循環經濟情境(加強廢棄物管理、建立封閉供應鏈、延長產品壽命、提升資源使用效率)作為模型分析情境。研究結果顯示,塑膠循環對塑膠製品以外的產業有較大的減碳效果,塑膠製品被回收製成再生料並重新投入塑膠原料相關產業,可以有效減少石油化工與相關化學材料產業的溫室氣體排放量,且塑膠循環再利用比單純減少塑膠使用量更具減碳效益。
As the impacts of global warming have become obvious, countries worldwide have begun to mitigate greenhouse gas (GHG) emissions, hoping to slow down the speed of climate change. Many think tanks have recognized the transition toward circular economies with significant GHGs reduction potential in many countries. The closed supply chains and maximized resource efficiency can reduce the energy requirements in raw material extraction, processing, and manufacturing. In a circular economy, the recycling system can also reuse the materials at the end of the product life cycle. Thus, the carbon footprint of the second life cycle might be significantly reduced. To assess the reduction potential for a circular economic system, a comprehensive analysis should consider the relationship between the industrial and waste management systems. This study evaluated the carbon reduction potential for different plastic circulation policy goals with scenario analyses from the waste input-output perspective. First, we integrated various industrial and waste stream datasets to establish a waste input-output model. Then, we combined GHG emissions data to evaluate the GHG emissions for each sector. The scenarios being analyzed include the plastic packaging reduction goals proposed by the Taiwan EPA and the four circular patterns mentioned in an article of the Journal of Economic Structures. The results show that improvement in plastic recycling has a more carbon reduction on other upstream industrial sectors than the “plastic products” sector. Looking at the inter-industrial linkages, the reduced demand for plastic could effectively reduce the GHG emissions from the petrochemical and chemical material industries.
Aguilar-Hernandez, G. A., Sigüenza-Sanchez, C. P., Donati, F., Rodrigues, J. F. D., & Tukker, A. (2018). Assessing circularity interventions: A review of EEIOA-based studies. Journal of Economic Structures, 7(1), 14. https://doi.org/10.1186/s40008-018-0113-3
Al-Ghussain, L. (2019). Global warming: Review on driving forces and mitigation: Global Warming: Review on Driving Forces and Mitigation. Environmental Progress & Sustainable Energy, 38(1), 13–21. https://doi.org/10.1002/ep.13041
Chen, B., Li, J. S., Wu, X. F., Han, M. Y., Zeng, L., Li, Z., & Chen, G. Q. (2018). Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis. Applied Energy, 210, 98–107. https://doi.org/10.1016/j.apenergy.2017.10.113
Ellen MacArthur Foundation. (2015). Growth Within: A circular economy vision for a competitive Europe. Ellen MacArthur Foundation.
Ellen MacArthur Foundation. (2017). The New Plastics Economy: Rethinking the future of plastics & catalysing action. Ellen MacArthur Foundation.
Ellen MacArthur Foundation. (2019). Completing the Picture: How the Circular Economy Tackles Climate Change. Ellen MacArthur Foundation.
Energy transitions commission. (2018). Mission Possible sectoral focus: Plastics. Energy transitions commission.
European renewable energy council. (2006). Renewable Energy Scenario to 2040 Half of the Global Energy Supply From Renewables in 2040. European renewable energy council.
Ghosh, S. K. (Ed.). (2020). Sustainable Waste Management: Policies and Case Studies: 7th IconSWM—ISWMAW 2017, Volume 1. Springer Singapore. https://doi.org/10.1007/978-981-13-7071-7
International Energy Agency. (2017). CO2 Emissions from Fuel Combustion 2017—Highlights. (p. 162). https://euagenda.eu/upload/publications/untitled-110953-ea.pdf
International Renewable Energy Agency. (2018). Global energy transformation a roadmap to 2050. International Renewable Energy Agency.
Kitzes, J. (2013). An Introduction to Environmentally-Extended Input-Output Analysis. Resources, 2(4), 489–503. https://doi.org/10.3390/resources2040489
Kondo, Y., & Nakamura, S. (2004). Evaluating alternative life-cycle strategies for electrical appliances by the waste input-output model. The International Journal of Life Cycle Assessment, 9(4), 236. https://doi.org/10.1007/BF02978599
Larrain, M., Van Passel, S., Thomassen, G., Van Gorp, B., Nhu, T. T., Huysveld, S., Van Geem, K. M., De Meester, S., & Billen, P. (2021). Techno-economic assessment of mechanical recycling of challenging post-consumer plastic packaging waste. Resources, Conservation and Recycling, 170, 105607. https://doi.org/10.1016/j.resconrec.2021.105607
Lenzen, M. (1998). Primary energy and greenhouse gases embodied in Australian final consumption: An input–output analysis. Energy Policy, 26(6), 495–506. https://doi.org/10.1016/S0301-4215(98)00012-3
Lopez-Urionabarrenechea, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2012). Catalytic stepwise pyrolysis of packaging plastic waste. Journal of Analytical and Applied Pyrolysis, 96, 54–62. https://doi.org/10.1016/j.jaap.2012.03.004
Material Economics. (2018). The Circular Economy—A Powerful Force for Climate Mitigation. Material Economics.
Material Economics. (2019). Industrial Transformation 2050—Pathways to Net-Zero Emissions from EU Heavy Industry. Material Economics.
Nakamura, S., & Kondo, Y. (2002a). Recycling, landfill consumption, and CO2 emission: Analysis by waste input–output model. Journal of Material Cycles and Waste Management, 4(1), 2–11. https://doi.org/10.1007/s10163-001-0052-0
Nakamura, S., & Kondo, Y. (2002b). Input-Output Analysis of Waste Management. Journal of Industrial Ecology, 6(1), 39–63. https://doi.org/10.1162/108819802320971632
Nakamura, S., & Kondo, Y. (2009a). Handbook of Input-Output Economics in Industrial Ecology (S. Suh, Ed.). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5737-3
Nakamura, S., & Kondo, Y. (2009b). Waste input-output analysis: Concepts and application to industrial ecology. Springer.
Nakamura, S., & Kondo, Y. (2018). Toward an integrated model of the circular economy: Dynamic waste input–output. Resources, Conservation and Recycling, 139, 326–332. https://doi.org/10.1016/j.resconrec.2018.07.016
Nakamura, S., Nakajima, K., Kondo, Y., & Nagasaka, T. (2007). The Waste Input-Output Approach to Materials Flow Analysis. Journal of Industrial Ecology, 11(4), 50–63. https://doi.org/10.1162/jiec.2007.1290
Nansai, K., Kagawa, S., Kondo, Y., Suh, S., Inaba, R., & Nakajima, K. (2009). Improving the completeness of product carbon footprints using a global link input–output model: The case of japan. Economic Systems Research, 21(3), 267–290. https://doi.org/10.1080/09535310903541587
Ohno, H., Matsubae, K., Nakajima, K., Kondo, Y., Nakamura, S., & Nagasaka, T. (2015). Toward the efficient recycling of alloying elements from end of life vehicle steel scrap. Resources, Conservation and Recycling, 100, 11–20. https://doi.org/10.1016/j.resconrec.2015.04.001
Ohno, H., Sato, H., & Fukushima, Y. (2018). Configuration of Materially Retained Carbon in Our Society: A WIO-MFA-Based Approach for Japan. Environmental Science & Technology, 52(7), 3899–3907. https://doi.org/10.1021/acs.est.7b06412
Our World in Data. (2020). CO2 emissions. Our World in Data. https://ourworldindata.org/co2-emissions
Paul Hawken. (2019). Drawdown 反轉地球暖化100招 (劉品均, Trans.). 聯經出版公司.
Project Drawdown. (2020, February 7). Bamboo Production @ProjectDrawdown #ClimateSolutions. Project Drawdown. https://www.drawdown.org/solutions/bamboo-production
Ridoutt, B. G., Hadjikakou, M., Nolan, M., & Bryan, B. A. (2018). From Water-Use to Water-Scarcity Footprinting in Environmentally Extended Input–Output Analysis. Environmental Science & Technology, 52(12), 6761–6770. https://doi.org/10.1021/acs.est.8b00416
Schwarz, A. E., Ligthart, T. N., Godoi Bizarro, D., De Wild, P., Vreugdenhil, B., & van Harmelen, T. (2021). Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Management, 121, 331–342. https://doi.org/10.1016/j.wasman.2020.12.020
Towa, E., Zeller, V., & Achten, W. M. J. (2020). Input-output models and waste management analysis: A critical review. Journal of Cleaner Production, 249, 119359. https://doi.org/10.1016/j.jclepro.2019.119359
Williams, P. T., & Slaney, E. (2007). Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resources, Conservation and Recycling, 51(4), 754–769. https://doi.org/10.1016/j.resconrec.2006.12.002
Yi, S., & Jang, Y.-C. (2018). Life cycle assessment of solid refuse fuel production from MSW in Korea. Journal of Material Cycles and Waste Management, 20(1), 19–42. https://doi.org/10.1007/s10163-016-0541-9
台灣自來水股份有限公司. (2021). 台灣自來水事業統計年報. https://www.water.gov.tw/ch/AnnualReport/Detail/54392?nodeId=4571
台灣電力股份有限公司. (2017, November 30). 台灣電力公司 [Text]. 台灣電力股份有限公司; 台灣電力股份有限公司. https://www.taipower.com.tw/tc/page.aspx?cchk=1b3221ee-37c3-4811-9d4d-a1bb215f33c8&cid=351&mid=213
呂博裕, 陳欽雨, & 張國一. (2015). 廢塑膠再製成再生塑膠粒之碳足跡研究. 工業污染防治, 133.
廖孟儀. (2015). 廢棄物投入產出評估台灣推動二次銅循環再利用之研究 [國立臺灣大學]. In 臺灣大學環境工程學研究所學位論文 (Issue 2015年, p. 140). https://doi.org/10.6342/NTU.2015.01028
徐世勳 & 劉瑞文. (2019). 投入產出分析概論. 雙葉書廊.
樊國恕. (2019). 建構塑膠資源循環經濟模式策略專案工作計畫. 行政院環境保護署.
江康鈺. (2018). 104-106年度一般廢棄物最終處置前 組成採樣及分析工作委託專案計畫. 國立中央大學.
法務部. (2015). 溫室氣體減量及管理法-全國法規資料庫. https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=O0020098
溫麗琪. (2017). 購物用塑膠袋使用費(稅)可行性分析與基金成立時施放案評估計畫. 行政院環境保護署.
王塗發, 楊浩彥, 林幸君, & 賴金端. (2020). 投入產出分析理論與務實. 財團法人台灣經濟研究院.
環保署廢管處. (2020). 塑膠循環經濟推動方案. 2020循環經濟高峰會.
經濟部. (2018). 國家整體減量架構-經濟部溫室氣體減量資訊網. https://www.go-moea.tw/b-01.php
經濟部標準檢驗局. (2001). 國家標準(CNS)網路服務系統. https://www.cnsonline.com.tw/
經濟部統計處. (2021). 工業產品群統計調查. https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx
經濟部能源局. (2016). 能源平衡表簡要說明.
莊雲雯(Yun-Wen Chuang), 李翎竹(Ling-Chu Lee), & 林品華(Pin-Hua Lin). (2009). 運用Leontief投入產出模型分析台灣農企業產業發展. 科技發展政策報導, 6, 41–58. https://doi.org/10.6446/STPR.200911.0041
行政院. (2019). 循環經濟推動方案 [Text/html]. 循環經濟推動方案; 2.16.886.101.20003. https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/18ef26a4-5d05-4fb3-963e-6b228e713576
行政院主計總處. (2019a). 105年產業關聯統計編制報告. 行政院主計總處.
行政院主計總處. (2019b). 105年產業關聯表. 行政院主計總處.
行政院主計總處. (2021). 主計總處統計專區—國民所得及經濟成長. https://www.stat.gov.tw/ct.asp?xItem=37407&CtNode=3564&mp=4
行政院環保署. (2017). 焚化廠營運月報—行政院環保署 EPA. https://data.epa.gov.tw/dataset/fac_s_02
行政院環保署. (2019). 行政院環境保護署-國家通訊. https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b
行政院環保署. (2020a). 2020年中華民國國家溫室氣體排放清冊報告. 行政院環保署.
行政院環保署. (2020b). 中華民國環境統計年報. 行政院環保署.
行政院環保署. (2020c). 資源循環分析系統. https://smmdb.epa.gov.tw/smm/webpage/enter.aspx
行政院環保署. (2021). 代碼查詢 | 公開查詢 | 事業廢棄物管理系統. https://waste.epa.gov.tw/RWD/Qry/
行政院經濟建設委員會. (2012). 台灣經濟發展歷程與策略.
陳彥霖. (2010). 台灣二氧化碳排放現況分析. 臺灣經濟研究月刊, 33(11), 15–27. https://doi.org/10.29656/TERM.201011.0003
黃泳禎. (2014). PET塑膠回收再利用之環境足跡探討 [國立臺北大學]. In 臺北大學自然資訊與環境管理研究所學位論文 (Issue 2014年, p. 92). https://www.AiritiLibrary.com/Publication/Index/U0023-1002201413512500