簡易檢索 / 詳目顯示

研究生: 王義欣
Wang, Yi-Sin
論文名稱: 有機金屬氣相磊晶在砷化鎵基板上成長銻砷化鎵量子井長波長雷射
Long Wavelength GaAsSb Quantum Well Lasers on GaAs Substrates Grown by MOVPE
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 94
中文關鍵詞: 銻砷化鎵有機金屬氣相磊晶
外文關鍵詞: GaAsSb, MOVPE
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在網際網路頻寬需求日益增加的情況下,發展光纖通訊是未來必然的趨勢,在光纖通訊中,1310與1550奈米的波長在光纖中分別有零色散與最低損耗的優點,是長距離光纖傳輸最適合的波段。傳統在磷化銦基板成長磷砷化銦鎵量子井雷射可以達到上述波段之長波長雷射,不過在價格上卻相當的昂貴,溫度特性也差強人意。
    在本論文中,我們嘗試利用有機金屬氣相磊晶系統在砷化鎵基板上成長銻砷化鎵量子井雷射來取代傳統長波長雷射,從成長銻砷化鎵塊材試片開始,利用高解析X射線繞射儀分析厚度及組成,大略了解磊晶參數對於銻砷化鎵成分和晶格品質的影響後,更進一步成長銻砷化鎵/砷化鎵的多重量子井,利用光激發螢光光譜儀來分析光特性。接下來將銻砷化鎵/砷化鎵量子井應用至邊射型雷射結構,經過邊射型雷射的製程步驟並且加以測量,我們成功的實現了銻砷化鎵/砷化鎵邊射型雷射,其中最長的雷射波長在1203奈米,是目前利用有機金屬氣相磊晶系統成長銻砷化鎵/砷化鎵邊射型雷射中,所達到最長的波長。
    在未來,我們也會接著成長波長在1300奈米附近的銻砷化鎵/砷化鎵雷射,另一方面也繼續研究更長波長的銻砷化鎵/砷化銦鎵雙層量子井雷射。

    Whereas the demand of internet bandwidth increasing day by day, it is a inevitable trend to develop fiber communication. In optical fiber communication, the wavelength regions of 1310nm and 1550nm have advantages of zero dispersion and lowest loss respectively. They are the most suitable transmission wavelength regions of long haul fiber communication. The long wavelength lasers can be achieved by growing InGaAsP on InP substrates traditionally. Not only it is very expensive but also the temperature characteristics are not good enough.
    In this thesis, we try to grow GaAsSb QW lasers on GaAs by MOVPE to replace InP based long wavelength lasers. The layer thickness and Sb composition of GaAsSb bulk samples were analyzed by HRXRD. After understanding the effects of epitaxy parameters to GaAsSb composition and lattice quality generally, a further step to grow GaAsSb/GaAs MQW and the optical properties by using photoluminescence were proceeded and analyzed. Then GaAsSb/GaAs edge emitting lasers were fabricated, GaAsSb/GaAs edge emitting lasers are demonstrated successfully. The longest lasing wavelength we achieved is 1203nm. To our knowledge, it’s the longest lasing wavelength of GaAsSb/GaAs edge emitting lasers grown by MOVPE.
    In the future, we will continue to grow GaAsSb/GaAs QW lasers near 1300nm. On the other hand, we will also go on to investigate GaAsSb/InGaAs bi-layer QW lasers for longer wavelength.

    Abstract (Chinese) I Abstract (English) II Acknowledgements III Contents IV Table Captions VI Figure Captions VII Chapter 1 Introduction 1-1 Introduction 1 1-2 Three windows of optical fibers 2 1-3 Organization of this thesis 3 Chapter 2 Metal Organic Vapor Phase Epitaxy System and Material Characterization 2-1 MOVPE system 9 2-1.1 Thermodynamically limited region 11 2-1.2 Mass-transport-limited region 12 2-1.3 Kinetically limited region 13 2-2 High resolution X-ray diffraction (HRXRD) 13 2-3 Photoluminescence (PL) 15 2-4 Laser measurement system 16 Chapter 3 GaAs1-xSbx alloys 3-1 Progress in GaAs1-xSbx lasers 21 3-2 Band alignment 22 3-3 Band bending effect 23 3-4 GaAs1-xSbx epitaxy 23 3-5 Strain of GaAs1-xSbx alloy 24 3-6 Temperature dependent of GaAs1-xSbx alloy system 25 Chapter 4 Growth of GaAs1-xSbx layer on GaAs substrates 4-1 Experimental detail 33 4-2 GaAs1-xSbx bulk growth 33 4-3 GaAs1-xSbx/GaAs QW growth 35 4-3.1 Effect of reactor pressure on GaAs1-xSbx epilayers 37 4-3.2 Temperature dependence of the band gap of GaAs1-xSbx epilayers 37 4-3.3 Annealing effect 39 Chapter 5 GaAs1-xSbx/GaAs lasers 5-1 Laser structures 57 5-2 Device fabrication 58 5-3 Device performance 59 5-3.1 Sample L1 59 5-3.2 Sample L2 60 5-4 Discussion 61 Chapter 6 Conclusion and Future Work 6-1 Conclusion 77 6-2 Future Work 78 6-2.1 Highly strain GaAs1-xSbx/GaAs QW 78 6-2.2 Highly strain GaAs1-xSbx/InyGa1-yAs bi-layer QW 78 6-2.3 GaAsSb VCSEL 79 Appendix 82 Reference 85 Table 1-1 GaAsSb material application on GaAs and InP substrates 8 Table 3-1 GaAs based GaAsSb epilayers grown by MOVPE 29 Table 3-2 Property of GaAs, GaSb and InAs binary semiconductor 30 Table 3-3 GaAs1-xSbx energy band gap parameters of Varshni model 32 Table 4-1 Growth parameters of samples B1 to B5, where the growth time of all samples is 1200 seconds 40 Table 4-2 Growth parameters of samples B5 to B7, where the growth time of all samples is 1200 seconds 41 Table 4-3 Growth parameters of samples B8 to B12, except growth temperature and growth time, all epitaxy parameters are the same 42 Table 4-4 Growth parameters of samples Q1 to Q7 44 Table 4-5 Growth parameter of samples Q8 to Q11, the growth temperature of Q8 to Q10 is 625℃, Q11 is 635℃ 47 Table 4-6 Growth parameter of samples Q12 to Q14, where samples Q12 and Q13 are triple quantum wells, sample Q14 is double quantum wells 49 Table 4-7 Summary of variable reactor pressures related GaAs1-xSbx composition 50 Table 4-8 GaAs1-xSbx QW optical studies in other groups 55 Table 5-1 Growth parameters of sample L1 and L2 64 Table 5-2 Laser parameters of sample L1 and L2 75 Table 5-3 GaAsSb epilayers grown at different temperature 75 Table 6-1 InGaAs layer and GaAsSb layer in detail 80 Table 6-2 Bi-layer details of GaAsSb/InGaAs QW 80 Table 6-3 GaAsSb VCSELs grown by MBE [1]-[7] 81 Figure 1-1 Transmission distance versus laser modulation frequency for a variety of optical-fibre/laser-diode sources utilized in optical networks 5 Figure 1-2 Fiber communication framework diagram 5 Figure 1-3 Loss spectra of representative multimode fibers, illustrating progress made in the last decade [2] 6 Figure 1-4 Material dispersion and refractive index of silica fiber [3] 6 Figure 1-5 Band gap versus lattice constant for III-arsenide alloys 7 Figure 1-6 Schematic diagram of band lineup for GaInAs and GaNAs [4] 7 Figure 2-1 The schematic drawing of an Aixtron 200 horizontal reactor with gas-foil rotation 18 Figure 2-2 The steps involved in the reaction of metal-organic molecules and incorporation in the solid 18 Figure 2-3 The schematic diagram of a high-resolution X-ray diffractometer 19 Figure 2-4 (a) A schematic diagram of the Bragg diffraction from planes of atoms in a crystal, (b) part of (a) in detail 19 Figure 2-5 The schematic diagram of the PL system 20 Figure 2-6 Schematic of laser measurement system 20 Figure 3-1 GaAsSb lasing wavelength vs. Jth, Data points are from reference [1]-[12] 26 Figure 3-2 Band lineups in heterostructure interface 26 Figure 3-3 Band bending schematic diagram 27 Figure 3-4 Binodal curve for system GaAsSb data points are from the work of Pessetto and Stringfellow [18](LPE)(△), Gratton et al. [19](equilibration through the liquid)(○). Takenaka et al. [20](LPE)(□), Cooper et al. [21](OMVPE)(●),and Cherng et al. [17] (OMVPE)(▲) 28 Figure 3-5 Dependence of the FWHM of X-ray diffraction rocking curves for GaAsSb layer [29] 29 Figure 3-6 Critical thickness of GaAsSb on GaAs substrate, where X axis is strain [24] 30 Figure 3-7 Strain vs. critical thickness 31 Figure 3-8 Critical thickness and energy gap of GaAsSb composition vs. GaAs mole fraction [25] 31 Figure 4-1 XRD spectra of samples B1 to B5, the Sb composition of GaAs1-xSbx is from 2% to 6% 40 Figure 4-2 XRD spectra of samples B5 to B7 41 Figure 4-3 (a) XRD spectra of samples B8 to B12, where B8 is topmost curves. (b) (0 0 4) and (5 1 1) XRD spectra of sample B10. (c) (0 0 4) and (5 1 1) XRD spectra of sample B11. (d) (0 0 4) and (5 1 1 ) XRD spectra of sample B12 42 Figure 4-4 Sb distribution coefficient vs. V/III ratio 45 Figure 4-5 (Sb/V)vapor vs. V/III ratio 45 Figure 4-6 Solid line is calculated Sb composition, dots are actual Sb composition 46 Figure 4-7 PL spectra of samples Q1 to Q7, where PL excitation power of Q7 is 100mw, and others is 20mw 46 Figure 4-8 The growth rate of samples Q1 to Q7, black dots is GaAs barriers, red dots is QWs. Samples Q1 to Q7 is 10 to 150 sccm of TMSb flow rate respectively 47 Figure 4-9 Sb distribution coefficient vs. V/III ratio 48 Figure 4-10 Solid line is calculated Sb composition, dots are actual Sb composition, the growth temperature is 625℃ 48 Figure 4-11 PL spectra of samples Q12 to Q14, where Q12 and Q13 are triple QWs, Q14 is double QWs 49 Figure 4-12 (a) PL spectra of GaAs0.77Sb0.23 QW for a series of excitation power at 11K. (b) PL spectra of InGaAs QW for a series of excitation power at 11K. (c) Peak energies of GaAs1-xSbx/GaAs QW and InGaAs/GaAs QW versus excitation power 50 Figure 4-13 (a) Temperature dependence of GaAs0.77Sb0.23/GaAs QW PL spectra measured at excitation power of 20 mW. (b) Temperature dependence of GaAs0.77Sb0.23/GaAs QW peak energies 52 Figure 4-14 The relation between integrated PL intensities of GaAs1-xSbx QWs and reciprocal temperature 53 Figure 4-15 Comparing GaAs0.77Sb0.23 QW peak energies with Varshni models, the black line is GaAs0.77Sb0.23 QW peak energies, the red line and blue line are calculated by utilizing Table 3-2 53 Figure 4-16 (a) Temperature dependence of GaAs0.73Sb0.27/GaAs QW peak energies. (b) Temperature dependence of GaAs0.70Sb0.30/GaAs QW peak energies 54 Figure 4-17 PL spectra of as-grown and furnace annealed GaAs0.7Sb0.3 QWs samples 55 Figure 4-18 PL spectra of as-grown and MOVPE annealed GaAs0.7Sb0.3 QWs samples 56 Figure 5-1 (a) The bandgap diagram and in situ reflectance of GaAsSb/GaAs laser structures. (b) Schematic structure of GaAsSb/GaAs DQW lasers 63 Figure 5-2 The flow chart of broad area laser fabrication process 65 Figure 5-3 (a) CW lasing and (b) pulse mode lasing of laser sample L1 66 Figure 5-4 EL and PL spectra by etching out the top layer of sample L1 67 Figure 5-5 (a) Temperature characteristics L-I curves of sample L1. (b) Threshold currents as a function of operating temperature 67 Figure 5-6 (a) Cavity length dependence of inverse external quantum efficiency. (b) Threshold current density of sample L1 versus inverse cavity length 68 Figure 5-7 (a) Lasing spectra in different heat sink temperature. (b) Lasing wavelength versus heat sink temperature 69 Figure 5-8 (a) Pulse mode lasing characteristics of laser sample L2 (b) I-V curve of laser sample L2 70 Figure 5-9 EL and PL spectra by etching out the top layer of sample L2 71 Figure 5-10 (a) Temperature characteristics L-I curves of sample L2. (b) Threshold currents as a function of operating temperature 72 Figure 5-11 (a) Cavity length dependence of inverse external quantum efficiency. (b) Threshold current density of sample L2 versus inverse cavity 73 Figure 5-12 (a) Lasing spectra in different heat sink temperature. (b) Lasing wavelength versus heat sink temperature 74 Figure 5-13 The lasing spectra in different cavity length 75 Figure 5-14 Comparison of Jth of GaAsSb/GaAs QW lasers in the 1100-1300nm wavelength region, numbers in parentheses are QW numbers 76 Figure 5-15 PL spectra of GaAsSb QWs grown at different temperatures 76 Figure 6-1 GaAsSb/InGaAs bi-layer QW band diagram 80 Figure 6-2 PL spectra of samples W2 to W5 81

    Chapter 1 Reference:
    [1].J. S. Harris Jr, “GaInNAs long-wavelength lasers: progress and challenges”, Semiconductor Science Technology, vol. 17, pp. 880-891, 2002
    [2].Tingye Li, “Advances in Optical Fiber Communications: An Historical Perspective”, IEEE J. Select. Areas in Communications, vol. sac-1, no. 3, pp.356-372, April 1983
    [3].J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ : Prentice 2002
    [4].M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance”, Jpn. J. Appl. Phys. 1, vol. 35, no. 2B, pp. 1273-1275, Feb 1996
    [5].X. Yang, J.B. Heroux, W.I. Wang, “InGaAsNSb: A novel material for long-wavelength semiconductor lasers”, CLEO, pp. 210, 2001
    [6].D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe,”1.3um room-temperature GaAs-based quantum-dot laser”, Appl. Phys. Lett., vol. 73, no. 18, 2 November 1998
    [7].X. G. Xu, J. Hu, S. P. Watkins, N. Matine, M. W. Dvorak and C. R. Bolognesi, "Metalorganic vapor phase epitaxy of high-quality GaAs0.5Sb0.5 and its application to heterostructure bipolar transistors", Appl. Phys. Lett., vol. 74, no. 7, pp. 976-978, 1999
    [8].M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, "Low-threshold operation of 1.3-mu m GaAsSb quantum-well lasers directly grown on GaAs substrates", IEEE Photon. Techonl. Lett., vol. 12, no. 7, pp. 774-776, 2000
    [9].T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, "Continuous-wave operation of 1.30 mu m GaAsSb/GaAs VCSELs", Electron. Lett., vol. 37, no. 9, pp. 566-567, 2001
    [10].X. Sun, J. Hsu, X. G. Zheng, J. C. Campbell and A. L. Holmes, "GaAsSb resonant-cavity-enhanced photodetector operating at 1.3 mu m", IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 681-683, 2002
    [11].H. Luo, J. A. Gupta and H. C. Liu, "1.55 mu m GaNAsSb photodetector on GaAs", Appl. Phys. Lett., vol. 86, no. 21, pp. -, 2005
    [12].L. G. Zheng, X. Zhang, Y. P. Zeng, S. R. Tatavarti, S. P. Watkins, C. R. Bolognesi, S. Demiguel and J. C. Campbell, "Demonstration of high-speed staggered lineup GaAsSb-InP unitraveling carrier photodiodes", IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 651-653, 2005

    Chapter 2 Reference :
    [1].G.B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.

    Chapter 3 Reference:
    [1].T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo, "GaAsSb: A novel material for 1.3 mu m VCSELs", Electron. Lett., vol. 34, no. 22, pp. 2127-2129, 1998
    [2].T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi and A. Kamei, "Room-temperature pulsed operation of GaAsSb GaAs vertical-cavity surface-emitting lasers", Electron. Lett., vol. 35, no. 11, pp. 903-904, 1999
    [3].M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, "Low-threshold operation of 1.3-mu m GaAsSb quantum-well lasers directly grown on GaAs substrates", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 774-776, 2000
    [4].T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, "Continuous-wave operation of 1.30 mu m GaAsSb/GaAs VCSELs", Electron. Lett., vol. 37, no. 9, pp. 566-567, 2001
    [5].P. W. Liu, M. H. Lee, H. H. Lin and J. R. Chen, "Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy", Electron. Lett., vol. 38, no. 22, pp. 1354-1355, 2002
    [6].O. Blum and J. F. Klem, "Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3 um", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 771-773, 2000
    [7].S. W. Ryu and P. D. Dapkus, "Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates", Electron. Lett., vol. 36, no. 16, pp. 1387-1388, 2000
    [8].M. S. Noh, R. D. Dupuis, D. P. Bour, G. Walter and N. Holonyak, "Long-wavelength strain-compensated GaAsSb quantum-well heterostructures laser grown by metalorganic chemical vapor deposition", Appl. Phys. Lett., vol. 83, no. 13, pp. 2530-2532, 2003
    [9].Irene Ecker, Susanne Menzel and Jurgen Joos,”Gas Source Molecular Beam Epitaxy of GaAsSb Based Laser Diodes for the Long Wavelength Range”, Annual report, Dept. of Optoclectronics, university of Ulm, 1999
    [10].S. Q. Yu, X. Jin, S. R. Johnson and Y. H. Zhang, "Gain saturation and carrier distribution effects in molecular beam epitaxy grown GaAsSb/GaAs quantum well lasers", J. Vac. Sci. Technol. B, vol. 24, no. 3, pp. 1617-1621, 2006
    [11].Z.B. Chen, S.R. Johnson, C. Navarro, S. Chaparro, J. Xu, N. Samal, J. Wang,Y. Cao, S. Yu, and Y.-H. Zhang, “Strain compensated GaAsP/GaAsSb/GaAs 1.3 um lasers grown on GaAs using MBE”, CLEO, pp.209, 2001.
    [12].P. W. Liu, G. H. Liao and H. H. Lin, "1.3 mu m GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy", Electron. Lett., vol. 40, no. 3, pp. 177-179, 2004
    [13].J. B. Wang, S. R. Johnson, S. A. Chaparro, D. Ding, Y. Cao, Y. G. Sadofyev, Y. H. Zhang, J. A. Gupta and C. Z. Guo, "Band edge alignment of pseudomorphic GaAs1-ySby on GaAs", Phys. Rev. B, vol. 70, no. 19, 2004
    [14].M. Dinu, J. E. Cunningham, F. Quochi and J. Shah, "Optical properties of strained antimonide-based heterostructures", J. Appl. Phys., vol. 94, no. 3, pp. 1506-1512, 2003
    [15].R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. Le Roux and L. Largeau, "Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs", J. Appl. Phys., vol. 89,no. 10, pp. 5473-5477, 2001
    [16].M. Peter, K. Winkler, M. Maier, N. Herres, J. Wagner, D. Fekete, K. H. Bachem and D. Richards, "Realization and Modeling of a Pseudomorphic (GaAs1-xSbx-Inyga1-yAs)/GaAs Bilayer-Quantum Well", Appl. Phys. Lett., vol. 67, no. 18, pp. 2639-2641, 1995
    [17].M. J. Cherng, G. G. Stringfellow, and R. M. Cohen, “Organometallic vapor phase epitaxial growth of GaAs0.5Sb0.5”, Appl. Phys. Lett., vol. 44, no. 7, pp. 677-679, 1984
    [18].J. R. Pessetto and G. B. Stringfellow,” AlxGa1−xAsySb1−y phase diagram”, J. Crystal Growth, vol. 62, no. 1, pp. 1-6, 1983
    [19].M. F. Gratton, R. G. Goodchild, L. Y. Juravel, and J. C. Woolley, J. Electron. Mater. vol. 8, no. 25, 1975
    [20].M. Takenaka, M. Inoue, J. Shirafuji, and Y. Inuishi, “Growth of GaAs1-xSbx crystals by steady-state liquid phase epitaxy” J. Phys. D, vol. 11, pp. L91-L95, 1978
    [21].C.B. Cooper, R. R. Saxena, and M. J. Ludowise, Electron. Lett., vol. 16, pp 892, 1980
    [22].G. L. Price, "Critical-Thickness and Growth-Mode Transitions in Highly Strained Inxga1-Xas Films", Phys. Rev. Lett., vol. 66, no. 4, pp. 469-472, 1991
    [23].X. B. Zhang, O. Briot, B. Gil and R. Aulombard, "Critical layer thickness in MOVPE grown InGaAs-GaAs strained quantum wells", Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 35, no. 1-3, pp. 184-187, 1995
    [24].Kiki Ikossi-Anastasiou, “GaAsSb for Heterojunction Bipolar Transistors”, IEEE Transactions on Electron device, vol. 40, no. 5, pp.878-884, May 1991
    [25].Landolt-Bernstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Volume 22, edited by O. Medelung Springer-Velag, Berlin, 1982.
    [26].T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, "Continuous-wave operation of 1.30 mu m GaAsSb/GaAs VCSELs", Electron. Lett., vol. 37, no. 9, pp. 566-567, 2001
    [27].K. G. Merkel, V. M. Bright, M. A. Marciniak, C. L. A. Cerny and M. O. Manasreh, "Temperature-Dependence of the Direct-Band-Gap Energy and Donor-Acceptor Transition Energies in Be-Doped GaAsSb Lattice-Matched to InP", Appl. Phys. Lett., vol. 65, no. 19, pp. 2442-2444, 1994
    [28].R. Lukic-Zrnic, B. P. Gorman, R. J. Cottier, T. D. Golding, C. L. Littler and A. G. Norman, "Temperature dependence of the band gap of GaAsSb epilayers", J. Appl. Phys., vol. 92, no. 11, pp. 6939-6941, 2002
    [29].H. Ito and T. Kobayashi, "Influence of lattice mismatch on the crystalline quality of metastable GaAsSb grown by metalorganic chemical vapor deposition", J. Crystal Growth, vol. 173, no. 1-2, pp. 210-213, 1997
    [30].M. Peter, K. Winkler, M. Maier, N. Herres, J. Wagner, D. Fekete, K. H. Bachem and D. Richards, "Realization and Modeling of a Pseudomorphic (Gaas1-Xsbx-Inyga1-Yas)/Gaas Bilayer-Quantum Well", Appl. Phys. Lett., vol. 67, no. 18, pp. 2639-2641, 1995
    [31].B. E. Hawkins, A. A. Khandekar, J. Y. Yeh, L. J. Mawst and T. F. Kuech, "Effects of gas switching sequences on GaAs/GaAs1-Sb-y(y) superlattices", J. Crystal Growth, vol. 272, no. 1-4, pp. 686-693, 2004
    [32].G. M. Peake, K. E. Waldrip, T. W. Hargett, N. A. Modine and D. K. Serkland, "OMVPE of GaAsSbN for long wavelength emission on GaAs", J. Crystal Growth, vol. 261, no. 2-3, pp. 398-403, 2004
    [33].M. Pristovsek, M. Zorn, U. Zeimer and M. Weyers, "Growth of strained GaAsSb layers on GaAs(001) by MOVPE", J. Crystal Growth, vol. 276, no. 3-4, pp. 347-353, 2005
    [34].J.-Y. Yeh, L. J. Mawst, A. A. Khandekar, T. F. Kuech, I. Vurgaftman, J. R. Meyer and N. Tansu, "Characteristics of InGaAsN-GaAsSb type-II “W” quantum wells ", J. Crystal Growth, vol. 287, no. 2, pp. 615-619, 2006
    [35].A. A. Khandekar, J. Y. Yeh, L. J. Mawst, X. Y. Song, S. E. Babcock and T. F. Kuech, "Growth of strained GaAs1-ySby layers using metalorganic vapor phase epitaxy", J. Crystal Growth, vol. 298, no. pp. 154-158, 2007

    Chapter 4 Reference:
    [1].M. J. Cherng, G. G. Stringfellow, and R. M. Cohen, “Organometallic vapor phase epitaxial growth of GaAs0.5Sb0.5”, Appl. Phys. Lett., vol. 44, no. 7, pp. 677-679, 1984
    [2].M. Pristovsek, M. Zorn, U. Zeimer and M. Weyers, "Growth of strained GaAs1-xSbx layers on GaAs(001) by MOVPE", J. Crystal Growth, vol. 276, no. 3-4, pp. 347-353, 2005
    [3].B. E. Hawkins, A. A. Khandekar, J. Y. Yeh, L. J. Mawst and T. F. Kuech, "Effects of gas switching sequences on GaAs/GaAs1-Sb-y(y) superlattices", J. Crystal Growth, vol. 272, no. 1-4, pp. 686-693, 2004
    [4].M. Dinu, J. E. Cunningham, F. Quochi and J. Shah, "Optical properties of strained antimonide-based heterostructures", J. Appl. Phys., vol. 94, no. 3, pp. 1506-1512, 2003
    [5].F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu and J. Shah, "Continuous-wave operation of a 1.3-mu m GaAs1-xSbx-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature", IEEE Photon. Technol Lett., vol. 13, no. 9, pp. 921-923, 2001
    [6].Y. S. Chiu, M. H. Ya, W. S. Su and Y. F. Chen, "Properties of photoluminescence in type-II GaAs1-xSbx/GaAs multiple quantum wells", J. Appl. Phys., vol. 92, no. 10, pp. 5810-5813, 2002
    [7].X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang and W. K. Ge, "Selectively excited photoluminescence of GaAs1-xSbx/GaAs single quantum wells", Appl. Phys. Lett., vol. 81, no. 20, pp. 3795-3797, 2002
    [8].D. S. Jiang, L. F. Bian, X. G. Liang, K. Chang, B. Q. Sun, S. Johnson and Y. H. Zhang, "Structural and optical properties of GaAs1-xSbx/GaAs heterostructure quantum wells", J. Crystal Growth, vol. 268, no. 3-4, pp. 336-341, 2004
    [9].R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. Le Roux and L. Largeau, "Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAs1-xSbx on GaAs", J. Appl. Phys., vol. 89, no. 10, pp. 5473-5477, 2001

    Chapter 5 Reference :
    [1].T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo, "GaAsSb: A novel material for 1.3 mu m VCSELs", Electron. Lett., vol. 34, no. 22, pp. 2127-2129, 1998
    [2].M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai and K. Uomi, "GaInNAs: A novel material for long-wavelength semiconductor lasers", IEEE J. Select. Topics Quantum Electron., vol. 3, no. 3, pp. 719-730, 1997
    [3].M. Yamada, T. Anan, K. Tokutome, A. Kamei, K. Nishi and S. Sugou, "Low-threshold operation of 1.3-mu m GaAsSb quantum-well lasers directly grown on GaAs substrates", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 774-776, 2000
    [4].S. Q. Yu, X. Jin, S. R. Johnson and Y. H. Zhang, "Gain saturation and carrier distribution effects in molecular beam epitaxy grown GaAsSb/GaAs quantum well lasers", J. Vac. Sci. Technol. B, vol. 24, no. 3, pp. 1617-1621, 2006
    [5].P. W. Liu, M. H. Lee, H. H. Lin and J. R. Chen, "Low-threshold current GaAsSb/GaAs quantum well lasers grown by solid source molecular beam epitaxy", Electron. Lett., vol. 38, no. 22, pp. 1354-1355, 2002
    [6].O. Blum and J. F. Klem, "Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3 um", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 771-773, 2000
    [7].S. W. Ryu and P. D. Dapkus, "Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates", Electron. Lett., vol. 36, no. 16, pp. 1387-1388, 2000
    [8].M. S. Noh, R. D. Dupuis, D. P. Bour, G. Walter and N. Holonyak, "Long-wavelength strain-compensated GaAsSb quantum-well heterostructures laser grown by metalorganic chemical vapor deposition", Appl. Phys. Lett., vol. 83, no. 13, pp. 2530-2532, 2003
    [9].Irene Ecker, Susanne Menzel and Jurgen Joos,”Gas Source Molecular Beam Epitaxy of GaAsSb Based Laser Diodes for the Long Wavelength Range”, Annual report, Dept. of Optoclectronics, university of Ulm, 1999
    [10].S. Q. Yu, X. Jin, S. R. Johnson and Y. H. Zhang, "Gain saturation and carrier distribution effects in molecular beam epitaxy grown GaAsSb/GaAs quantum well lasers", J. Vac. Sci. Technol. B, vol. 24, no. 3, pp. 1617-1621, 2006
    [11].Z.B. Chen, S.R. Johnson, C. Navarro, S. Chaparro, J. Xu, N. Samal, J. Wang,Y. Cao, S. Yu, and Y.-H. Zhang, “Strain compensated GaAsP/GaAsSb/GaAs 1.3 um lasers grown on GaAs using MBE”, CLEO, pp.209, 2001.
    [12].P. W. Liu, G. H. Liao and H. H. Lin, "1.3 mu m GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy", Electron. Lett., vol. 40, no. 3, pp. 177-179, 2004

    Chapter 6 Reference :
    [1].T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo, "GaAsSb: A novel material for 1.3 mu m VCSELs", Electron. Lett., vol. 34, no. 22, pp. 2127-2129, 1998
    [2].T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi and A. Kamei, "Room-temperature pulsed operation of GaAsSb GaAs vertical-cavity surface-emitting lasers", Electron. Lett., vol. 35, no. 11, pp. 903-904, 1999
    [3].F. Quochi, J. E. Cunningham, M. Dinu and J. Shah, "Room temperature operation of GaAsSb/GaAs quantum well VCSELs at 1.29 mu m", Electron. Lett., vol. 36, no. 25, pp. 2075-2076, 2000
    [4].T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei and S. Sugou, "Continuous-wave operation of 1.30 mu m GaAsSb/GaAs VCSELs", Electron. Lett., vol. 37, no. 9, pp. 566-567, 2001
    [5].F. Quochi, D. C. Kilper, J. E. Cunningham, M. Dinu and J. Shah, "Continuous-wave operation of a 1.3-mu m GaAsSb-GaAs quantum-well vertical-cavity surface-emitting laser at room temperature", IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 921-923, 2001
    [6].P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi and Y. H. Zhang, "Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications", Electron. Lett., vol. 39, no. 13, pp. 987-988, 2003

    下載圖示 校內:2011-06-28公開
    校外:2011-06-28公開
    QR CODE