簡易檢索 / 詳目顯示

研究生: 鄧福友
Teng, Fu-Yu
論文名稱: 以鋁基層促進奈米碳管之成長
Enhanced Growth of Carbon Nanotubes through the Introduction of an Aluminum Underlayer
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 141
中文關鍵詞: 鐵-矽薄膜催化劑奈米碳管鋁基層
外文關鍵詞: Fe-Si thin film catalyst, Al underlayer, CNTs
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在前人的研究中指出,鐵-矽薄膜催化劑可以有效的在低溫下(370 ℃)以13 μm/min的高成長速率合成準直性的奈米碳管。為確保實驗過程中鐵-矽薄膜催化劑的成份比例,不致於在氫氣電漿處理過程中受到矽基板中矽原子的擴散,並造成不必要的鐵矽化合物,因此於鐵-矽薄膜催化劑下沉積一層金屬基層(underlayer)。過去的文獻中指出,於催化劑薄膜下沉積一層(例如Al或是Ir)金屬薄膜可以有效的提供更具活性的成核位置,以助於奈米碳管的合成。因此本研究企圖在鐵-矽薄膜催化劑下沉積一層鋁基層,來研究其對成長奈米碳管之影響。
    本研究主要採用前人最佳的Fe-Si薄膜參數,在固定厚度的Fe-Si薄膜催化劑下,藉由濺鍍不同厚度的Al基層來探討其對於鐵矽基層及奈米碳管的成長特性。實驗所使用的Al基層是以直流濺鍍法製備,而Fe-Si薄膜催化劑是由共濺鍍法(Co-sputtering)製備,並採用微波電漿輔助化學氣相沉積法(MPCVD)於低溫下成長奈米碳管,碳管成長時所使用的反應氣體均為甲烷(碳源)及氫氣(載氣)的混合氣體。
    在以MPCVD成長碳管過程之中,先以氫氣電漿前處理使催化劑薄膜達到適合成長碳管的條件,再通入碳源以提供奈米碳管的成長。發現使用Fe-Si薄膜催化劑,在未經氫氣電漿前處理下是無法合成準直性的奈米碳管,其成長速率僅0.4 μm/min,但在本研究發現,Al/Fe-Si薄膜催化劑在未經過氫氣電漿前處理的條件下,卻可以合成準直性的奈米碳管,其成長速率在Al厚度為2 nm時可達2.5 μm/min。
    為了促使催化劑薄膜達到適合成長奈米碳管的條件,在經過5 min氫氣電前處理下,以相同成長條件下合成奈米碳管。發現2-4 nm的Al基層除了可以促進Fe-Si薄膜催化劑在合成準直性奈米碳管的成長速率並可以降低奈米碳管的直徑,其成長速率高達9.2 μm/min;而8-40 nm的Al基層在促進奈米碳管的成長速率下同時也降低奈米碳管的密度。另外也針對不同的氫氣電漿處理時間以及不同的碳源濃度來探討對於合成奈米碳管之影響,並比較Fe-Si及Al/Fe-Si薄膜催化劑的差異性,發現Al/Fe-Si薄膜催化劑在合成準直性奈米碳管上皆優於Fe-Si薄膜催化劑。
    在本研究中以Al/Fe-Si催化劑薄膜在成長奈米碳管之際,經由氫氣電漿蝕刻後所產生的Fe-Si-Al基層薄膜結構提供碳管成長的位置,其中Si含量增進C原子在Fe中之擴散能力,而Al的擴散促使鐵矽基層結構的更趨於非晶質結構,亦有助於C在催化劑薄膜中的擴散,以促進奈米碳管之成長速率。
    本研究中經由氫氣電漿蝕刻後的Fe-Si及Al/Fe-Si催化劑薄膜,乃以穿透式電子顯微鏡(TEM)、低掠角X光繞射儀(grazing incident XRD)以及掃描式電子顯微鏡(SEM)進行分析與觀察,並以原子力顯微鏡(atomic force microscopic,AFM)觀察催化劑試片的表面粗糙度,而製程所獲得的奈米碳管則是以掃描式電子顯微鏡(SEM)及拉曼(Raman)光譜加以觀察與分析。

    According to the previous report, we have achieved very fast growth rate of aligned carbon nanotubes (CNTs) at low temperature (370 ℃) using Fe-Si thin film catalyst. A metal thin film containing Fe/Si with a specific ratio was used as a catalyst which acts as a diffusion barrier for Si from substrate to the film thus prohibiting the formation of undesired FeSi compound during plama etching. The introduction of a metal underlayer (such as Al or Ir) under the active catalyst layers appears to provide more active nucleation sites. Therefore the Al underlayer was used under Fe-Si thin film catalyst and study the effect of growing CNTs.
    The Fe-Si thin film catalyst was prepared using dc magnetron co-sputter deposition and the Al underlayer was deposited on the substrate using dc magnetron sputter deposition. Catalyst deposited substrates were then subjected to a MPCVD reactor for the growth of CNTs. The reaction gas used was methane along with hydrogen.
    In the process of CNT growth, the plasma pretreatment was necessary to make the thin film catalyst more active and could used to growth CNTs. It was found that the Fe-Si thin film catalyst could not be used to grow CNTs without plasma etching. This could result in CNTs with growth rate of 0.4 μm/min only , but the deposition of 2 nm thick Al underlayer not only produced CNTs at higher growth rate of 2.5 μm/min but it also resulted in highly aligned CNTs.
    In order to get more active catalyst, CNTs were grown after 5 min plasma etching. The application of a 2-4 nm thick Al underlayer between the catalyst and the substrate lead to an enhanced growth rate of well aligned carbon nanotubes and reduced the diameter of CNTs while the growth rate was reached to 9.2 μm/min. And the application of a 8-40 nm thick Al layer leads to enhanced the growth rate and reduce the density of CNTs at the same time. The influence of pretreatment times and methane concentration on the growth of CNTs has also been discussed in this study. It was found that the characteristics of CNTs grown on Al/Fe-Si thin films were better than the same on Fe-Si.
    In the present study, the Al/Fe-Si thin film were used to growth CNTs, and the base layer of Fe-Si-Al were formed after plasma etching which could provide the nucleation sites for CNTs growth. The addition of Si into Fe thin film could increase the diffusion of C in Fe-Si thin film catalyst. The Al diffused into the Fe-Si thin film and produced more amorphous structure. It could further increase/promoted the diffusion of C into Fe catalyst too and enhanced the growth rate.
    The as-deposited and etched catalysts, and the resulting CNTs were analyzed using Hitachi S4100 and Philips XL-40FEG scanning electron microscopes (SEM), FEI Tecnai F20 G2 high transmission electron microscopes (HR-TEM) equipped with a field emission gun (FEG), providing a point-to-point and line resolution of 0.23 nm and of 0.1 nm, respectively. The atomic force microscope was for the roughness measurement of the catalyst films. Electron beam generated X-ray Absorption for Depth measurement (EXAD) was carried out using the high angle annular dark field detector (HAADF) during the TEM analysis for determining the elemental profile across a line. Micro Raman spectrometer from Renishaw with He-Ne laser source with a wavelength of 633 nm was used to determine the quality of CNTs.

    目 錄 摘要…………………………………………………………………….……...I Abstract……...………………..…………………………………..…………III 誌謝………………………………………………………………………….Ⅴ 目錄…………………………………………...……………………..............Ⅶ 表目錄……………………………………………………………….............IX 圖目錄…………………………………………………………………..........X 第一章 緒論………………………………………………………………….1 1-1 前言…………………………………………………….……………1 1-2 研究動機與目的…….……………………………….……………...3 第二章 文獻回顧………………………………………………………….....4 2-1 奈米碳管之結構與特性….………………….…………..….............4 2-1-1電性質………………………………………………….……...8 2-1-2熱性質……………………………………..……….………...10 2-1-3場發射特性……………………………………….………….12 2-2 奈米碳管之合成方法與成長機制………………………………...14 2-2-1合成方法簡介………………………………………………..14 2-2-2成長機制簡介………………….…………………………….28 2-3鐵-矽薄膜……………….………………………………….. ……..33 2-4鋁基層在成長奈米碳管之應用…………………………………...35 2-5拉曼光譜簡介……………………….………...…………………...37 第三章 實驗…………………………………………………….……..........41 3-1 實驗流程………………..………………………………….………41 3-2 製程設備……………………….…………………………………..43 3-2-1磁控濺鍍系統………….………..……………………...……43 3-2-2微波電漿輔助化學氣相沉積系統…………...……………...45 3-3 實驗材料…………………………………….………….…..……...47 3-3-1基板材料….………………………………..………………...47 3-3-2反應氣體…….……………………………………………….47 3-3-3基材清潔….…………………………………….……............47 3-4 MPCVD成長奈米碳管之步驟……………………………………48 3-5 TEM 觀察試片之製作步驟……………………………………….50 3-6試片分析與鑑定…………………………………………………...57 3-6-1 薄膜結晶結構分析………………………….………............57 3-6-2 表面型態觀察………………………………….……............58 3-6-3 微結構分析……………………………………………...… .58 3-6-4 拉曼光譜分析……………………………………………….58 第四章 結果與討論………….……………………………..…….…...........60 4-1 催化劑薄膜的成長與特性分析…………………………………..61 4-1-1鐵-矽薄膜催化劑 …………………………………………...61 4-1-2鋁/鐵-矽薄膜催化劑………………………………………...71 4-2 奈米碳管的成長與特性分析………………………......................88 4-2-1催化劑薄膜在未經過氫氣電漿前處理下成長奈米碳管…..88 4-2-2氫氣電漿前處理之影響……………………………………..95 4-2-3鋁基層厚度之影響………….……………………………...107 4-2-4甲烷濃度之影響…………….……………………………...124 第五章 結論…………………………………………………..……………130 第六章 未來工作…………………………………………………………..132 參考文獻…………………………………………………………………...133 作者簡介…………………………………………………………………...141

    1. Iijima S., Nature 354 (1991) 56.
    2. Dresselhaus M. S., Eklund P. C., Advances in Physics 49 (2000) 705.
    3. Tasaki S., Maekawa K., Yamabe T., Physical Review B 57(1998) 9301.
    4. Kuzumaki T, Mitsuda Y, Appl. Phys. Lett. 85 (2004)1250.
    5. Issi J.P., Langer L., Heremans J., Olk C.H., Carbon 33 (1995) 941.
    6. L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond and Rel. Mater. 9 (2000) 1270.
    7. Giannis Mpourmpakis, George E. Froudakis, Appl. Phys. Lett. 89 (2006) 233125.
    8. Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, Science 297 (2002) 787.
    9. C. Emmenegger et al. Carbon 41(2003) 539.
    10. Cassel AM, Raymakers JA, Kong J, et al., J. Phys. Chem. B. 103 (1999) 6484.
    11. Chen P, Zhang HB, Lin GD et al. Carbon. 35 (1997) 1495.
    12. Cassel A.M., Raymakers J.A., Kong J., et al., J. Phys. Chem. B 103 (1999) 6484.
    13. Chen P., Zhang H.B., Lin G.D., et al., Carbon 35 (1997) 1495.
    14. Thess A., Lee R., Nikolaev P., et al., Science 273 (1996) 483.
    15. Jyh-Ming Ting, Shih-Wei Hung, Diamond Relat. Mater.15 (2006) 1834.
    16. Kun-Hou Liao, Jyh-Ming Ting, Diamond Relat. Mater.15 (2006) 1210.
    17. Jyh-Ming Ting, Kun-Hou Liao, Chem. Phys. Lett. 396 (2004) 469.
    18. T. de los Arcos, F. Vonau, M.G. Garnier, V. Thommen, P. Oelhafen, M. Düggelin, D. Mathis, R. Guggenheim, Appl. Phys. Lett. 80 (2002) 2383.
    19. L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Chem. Phys. Lett. 348 (2001) 368.
    20. L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B.Chen, J. Han, M. Meyyappan, J. Appl. Phys. 91 (2002) 6027.
    21. K.M. Lee, H.J. Han, S. Choi, K.H. Park, S.G. Oh, S. Lee, K.H. Koh, J. Vac. Sci. Technol. B 21 (2003) 623.
    22. T. de los Arcos, M.G. Garnier, P. Oelhafen, D. Mathys,J.W. Seo, C. Domingo, J.V. García-Ramos, S. Sánchez-Cortés, Carbon (accepted).
    23. de los Arcos, Teresa; Gunnar Garnier, M.; Oelhafen, Peter; Mathys, Daniel; Won Seo, Jin; Domingo, Concepción; et. al.Carbon 42 (2004) 187.
    24. K. B. K. Teo, C. Singh, M. Chhowalla and W. I. Milne: Encycl. Nanosci. Nanotechnol. 1 (2004) 665.
    25. H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan and D. H. Lowndes: Chem. Phys. Lett. 374 (2003) 222.
    26. C. Bower, O. Zhou, W. Zhu, D. J. Werder and S. Jin: Appl. Phys. Lett. 79 (2000) 2767.
    27. T.W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
    28. H.W. Kroto, J.R. Heath, S.C.O. Brien et al. Nature 318 (1985) 162.
    29. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33 (1995) 883.
    30. R.T.K. Baker, P.S Harries, Chemistry and Physics of Carbon , Marcel Dekker, New
    York (1978) 83.
    31. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263 (1994) 1744.
    32. S. Amelinckx, D. Bernaerts, X.B. Zhang, G.V. Tendeloo, J.V. Landuyt, Science 26
    (1995) 1334.
    33. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes, Academic Press, San Diego, 1996.
    34. N. Hamada, S Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
    35. H. Dai, E.W. Wong, C.M. Lieber, Science 272 (1996) 523.
    36. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54.
    37. W. Primak, L.H.Fuchs, Phys. Rev. 95 (1954) 22.
    38. M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Topics in Current Chemistry 199 (1998) 1.
    39. R. S. Ruoff, D.C. Lorents, Carbon 33 (1995) 925.
    40. S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613.
    41. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59 (1999) R2514.
    42. J. Hone, M.C. Llaguno, N.M. Nemes, A. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J.Schmidt, R.E. Smalley, Appl. Phys. Lett. 77 (2000) 666.
    43. W. Yi, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie, Phys. Rev. B 59 (1999) R9015.
    44. M.A. Osman, D. Srivastava, Nanotechnology 12 (2001) 21.
    45. M. J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Appl. Phys. Lett. 80 (2002) 2767.
    46. J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl. Phys. A 74 (2002) 339.
    47. W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270(1995) 1179.
    48. O. Gröning, O. M.Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach, J. Vac.Sci. Technol. B, 28 (2000) 665.
    49. J. Amaratunga, Applied Physics Letters, 79 (2001) 2079.
    50. A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl. Phys. Lett., 76 (2000) 3813.
    51. J. M. King, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related Materials, 9 (2000) 1184.
    52. H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Applied Physics Letters, 76 (2000) 1776.
    53. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han,Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Applied Physics Letters,75 (1999) 3129.
    54. A. van Oostrom, J. Appl. Phys., 33(1962) 2917.
    55. T. W. Ebbeseen, P.M. Ajayan, Nature 358 (1992) 220.
    56. D.S. Bethune, C.H. Kiang, De Vires, Nature 363 (1993) 605.D.S. Bethune, C.H. Kiang, De Vires, Nature 363 (1993) 605.
    57. T.W. Ebbeseen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209 (1993) 83.
    58. S. Seraphin, D. Zhou, J. Jiao, C. Withers, R. Loufty, Carbon 31 (1993) 685.
    59. P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. de la Chapelle, S. Lefrant, R. Lee, and J. E. Fischer, Carbon, 36 (1998) 675.
    60. S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Nature 366 (1993) 637.
    61. S. Zhou, S. Seraphin, and S. Wang, Applied Physics letters, 65 (1994) 1593.
    62. Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Chemical Physics letters, 236 (1995) 419.
    63. Y. Saito, M. Okuda, N. Fujmoto, T. Yoshikawa, M. Tomita, and T. Hayashi, Jpn. J. Appl. Phy., 33 (1994) L-526.
    64. T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, J. Phys. Chem. 99 (1995) 10694.
    65. A. Thess, R. Lee, P. Nikolaev, Science 273 (1996) 483.
    66. T. Guo, P. Nikolaev, A. Thess, Chem. Phys. Lett. 243 (1995) 49.
    67. R. T. K. Baker, M.A. Braber, P.S. Harries, F.S. Feates, R.J. Waite, J. Catalysis 26 (1972) 51.
    68. R. T. K. Baker, J.J. Chludzinski, J. Catalysis 64 (1980) 464.
    69. A. Oberlin, M. Endo, T. Koyama, J. Cryst. Growth 32 (1976) 335.
    70. M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Diamond and Related Materials 10 (2001) 1235.
    71. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Mater. Sci. Eng. A 286 (2000) 11.
    72. X.H. Chen, S.Q. Feng, Y. Ding, J.C. Peng, Z.Z. Chen,Thin Solid Films 339 (1999) 6.
    73. C.J. Lee, J. Park, S.Y. Kang, J.H. Lee, Chem. Phys. Lett. 323 (2000) 554.
    74. C.J. Lee, J.H. Park, J. Park, Chem. Phys. Lett. 323 (2000) 560.
    75. N. Grobert et al., Appl. Phys. A 70 (2000) 175.
    76. M. Terrones et al., Nature 388 (1997) 52.
    77. M. Terrones et al., Chem. Phys. Lett. 285 (1998) 299.
    78. N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, ct37 (1997) 295.
    79. Q. Liang, Q. Li, D.L. Chen, D.R. Zhou, B.L. Zhang, Z.L. Yu, Chemical Journal of Chinese Universities-Chinese 21 (2000) 623.
    80. N.M. Rodriguez, M.S. Kim, F. Tortin, I. Mochida, R.T.K. Baker, Appl. Catalysis A 148 (1997) 265.
    81. C.J. Lee, J. Park, J.M. Kim, Y. Huh, J.Y. Lee, K.S. No, Chem. Phys. Lett. 327 (2000) 277.
    82. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catalysis A, 199 (2000) 245.
    83. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701.
    84. Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Chem. Phys. Lett. 299 (1999) 97.
    85. J.Li, C. Papadopoulos, M. Xu, M. Moskovits, Appl. Phys. Lett. 75 (1999) 367.
    86. J.Li, C. Papadopoulos, J. Xu, Nature 402 (1999) 253.
    87. A.W.H. Mau, L. Dai, J. American Chemical Society 121 (1999) 10832.
    88. S. Huang, L. Dai, A.W.H. Mau, J. Physical Chemistry B 103 (1999) 4223.
    89. D.R. Lide, H.P.R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
    90. P.E. Nolan, M.J. Schabel, D.C. Lynch, Carbon 33 (1995) 79.
    91. 徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
    92. Y.H. Wang, J. Lin, C.H. A. Huan, G.S. Chen, Appl. Phys. Lett. 79 (2001) 680.
    93. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Appl. Phys. Lett. 79 (2001) 1534.
    94. H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, Applied Surface Science 181 (2001) 248.
    95. 寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
    96. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Appl. Phys. Lett. 77 (2000) 3468.
    97. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77 (2000) 2767.
    98. Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367.
    99. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77 (2000) 830.
    100. Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, Diamond and Related Materials 11 (2002) 59
    101. Y.C. Choi, D.J. Bae7, Y.H. Lee, B.S. Lee, I.T. Han, W.B.Choi, N.S. Lee, J.M. Kim, synthetic metals 108 (2000) 159.
    102. M. Endo, H.W. Kroto, J. Phys. Chem. 96 (1992) 6941.
    103. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 304 (1999) 277.
    104. A. Oberlin, M. Endo, T. Koyama, Carbon 14 (1976) 133.
    105. T. Baird, J.R. Fryer, B. Giant, Carbon 12 (1974) 591.
    106. Y.J. Yoon, H.K.Baik, Diamond and Related Materials 10 (2001) 1214.
    107. U. Starke, W. Weiss, M. Kutschera, R. Bandorf, K. Heinz, J Appl. Phys. 91 (2002) 6154.
    108. J. Diaz, S.M. Valvidares, R. Morales, J.M. Alameda, J. Magnetism and Magnetic Mater. 242-245 (2002) 166.
    109. Y. Shimada, H. Kojima, J Appl. Phys. 47 (1976) 4156.
    110. S.K. Sharma, H.P. Geserich, W.A. Theiner, Phys. Stat. Sol. (a) 32 (1975) 467.
    111. H.P. Geserich, S.K. Sharma, W.A. Theiner, Phil. Mag. 27 (1973) 1001.
    112. N.A. Blum, C. Feldmann, J. Non-crystall. Solids 11 (1972) 242.
    113. L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Metals 4(5) (1982) 965.
    114. L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Metals 3(2) (1981) 285.
    115. L.M. Sandler, V.N. Pushkar, I.V. Filonchuk, T.S. Korsunskaya, Phys. Stat. Sol. (a) 91 (1985) 371.
    116. J.M. Alameda, M.C. Contreras, M. Torres, A.G. Arche, J. Magnetism and Magnetic Mater. 62 (1986) 215.
    117. N.R. Baldwin, D.G. Ivey, J. Phase Equilibria 16(4) (1995) 300.
    118. T. de los Arcos, F. Vonau, M.G. Garnier, V. Thommen, P. Oelhafen, M. Dúggelin, D. Mathis, R. Guggenheim, Appl. Phys. Lett. 80 (2002) 2383.
    119. L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Chem. Phys. Lett. 348 (2001) 368.
    120. L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, J. Appl. Phys. 91 (2002) 6027.
    121. K.M. Lee, H.J. Han, S. Choi, K.H. Park, S.G. Oh, S. Lee, K.H. Koh, J. Vac. Sci. Technol. B 21 (2003) 623.
    122. T. de los Arcos, M.G. Garnier, P. Oelhafen, D. Mathys, J.W. Seo, C. Domingo, J.V. Garc_ıa-Ramos, S. S_anchez-Cort_es, Carbon (accepted).
    123. de Los, Gunnar, Oelhafen P, Mathys D, Won, Domingo C, Vicente , Sanchez-Cortes S, Carbon 42 (2004) 187.
    124. Vladimir I. Merkulov, Anatoli V. Melechko, Michael A. Guillorn, Douglas H. Lowndes, and Michael L. Simpson, Appl. Phys. Lett 80 (2002) 476.
    125. Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, Pirio G,Legagneux P, et al., J Vac Sci Technol B 20 (2002) 116.
    126. Delzeit, Lance; Chen, Bin; Cassell, Alan; Stevens, Ramsey; Nguyen, Cattien; Meyyappan, M. pp., Chem. Phys. Lett. 348 (2001) 368.
    127. Delzeit, Lance; McAninch, Ian; Cruden, Brett A.; Hash, David; Chen, Bin; Han, Jie; Meyyappan, M., J Appl Phys 91 (2002) 6027.
    128. K. B. K. Teo, C. Singh, M. Chhowalla and W. I. Milne: Encycl. Nanosci. Nanotechnol. 1 (2004) 665.
    129. H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan and D. H. Lowndes: Chem. Phys. Lett. 374 (2003) 222.
    130. C. Bower, O. Zhou, W. Zhu, D. J. Werder and S. Jin: Appl. Phys. Lett. 77 (2000) 2767.
    131. M. Katayama, K.-Y. Lee, S. Honda, T. Hirao and K. Oura: Jpn. J. Appl. Phys. 43 (2004) L774.
    132. K.Y. Lee, Shin-ichi Honda, Mitsuhiro Katayama, Takashi Miyake,Katsuya Himuro, and Kenjiro Oura, J. Vac Sci. Technol. B, 23 (2005) 1450.
    133. 汪建民主編,材料分析,中國材料科學學會,新竹市,民國87年。
    134. H. Hiura, T.W. Ebbesen, K. Tanigaki, et al. Chem. Phys. Lett 202 (1993) 509.
    135. P.C. Eklund, C. Brabec, M. Buongiorno, A. Maiti, C. Roland, B.I. Yakobson, Appl. Phys. A-Mater. 67 (1998) 39.
    136. H. Wang, J. Lin, C.H.A. Huang, P. Dong, J. He, S.H. Tang, W.K. Eng, T.L.J. Thong, Applied Surface Science 181 (2001) 248.
    137. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Appl. Phys. Lett. 77 (2000) 3468.
    138. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77 (2000) 2767.
    139. Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G. Park, W.B. Choi, N.S. Lee, J.M. Kim, Appl. Phys. Lett. 76 (2000) 2367.
    140. R.C. van Oort, M.J. Geerts, J.C. van der Heuvel, J.W. Metselaar, Electronics Letters 23 (18) (1987) 967.
    141. S. Park, R.M. Walser, Carbon 23 (1985) 701.
    142. 廖坤厚, 催化劑特性對準直性奈米碳管成長之影響, 國立成功大學材料科學及工程學系, 博士論文, 2006.
    143. N.M. Rodriguez, J. Mater. Res. 8 (1993) 3233.
    144. Atsushi Okita, Atsushi Ozeki, Yoshiyuki Suda*, Junji Nakamura1, Akinori Oda2, Krishnendu Bhattacharyya, Hirotake Sugawara and Yosuke Sakai, JJAP, 45 (2006) 8323.
    145. P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, Phys. Rev. B 51 (1995) 10048.
    146. Y. Ando, X. Zhao, H. Shimoyama, Carbon 39 (2001) 569.
    147. M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Phys. Rev. B 59 (1999) R6585.
    148. I. Pocsik, M. Hundhausen, M. Koos, L. Ley, J. Non-Cryst. Solids 227-230 (1998) 1083.
    149. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2002) 2961.
    150. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684.
    151. M.A. Tamor, W.C. Vassell, J. Appl. Phys. 76(6) (1994) 3823.
    152. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, S.R.P. Silva, J. Appl. Phys. 80(1) (1996) 440.
    153. U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, Diamond Rel. Mater. 10 (2001) 1947.
    154. Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, G.S. Park, W.B. Choi, N.S. Lee, J.M. Kim, J. Vac. Sci. Technol. A 18 (2000) 1864.
    155. U.Kim, R. Pcionek, D.M. Aslam, D. Tomanek, Diamond Rel. Mater. 10 (2001) 1947.

    下載圖示 校內:2008-08-03公開
    校外:2008-08-03公開
    QR CODE