| 研究生: | 陳威宇 Chen, Wei-Yu | 
|---|---|
| 論文名稱: | 基於超疏水/超親油性質材料的油-水分離方法 Oil-water separation methods based on materials with superhydrophobic/superoleophilic properties | 
| 指導教授: | 楊毓民 Yang, Yu-Min | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 化學工程學系 Department of Chemical Engineering | 
| 論文出版年: | 2019 | 
| 畢業學年度: | 107 | 
| 語文別: | 中文 | 
| 論文頁數: | 136 | 
| 中文關鍵詞: | 超疏水/超親油表面 、表面黏著型態 、油-水分離 、聚酯纖維分離膜 、三聚氰胺吸收綿 | 
| 外文關鍵詞: | Superhydrophobic/superoleophilic surface, Polyester separation membrane, Melamine absorption sponge, Oil-water separation, Surface wetting mode | 
| 相關次數: | 點閱:87 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
有別於傳統的油-水分離方法,利用材料表面特殊濕潤性質,可望達成開發高效率、省能源、快速且簡易的新穎油-水分離程序的目標。本研究以聚酯纖維紡織品及三聚氰胺泡綿為基材,進行超疏水/超親油的表面修飾處理,進而分別做為分層 (stratified)及乳化 (emulsified)的油-水混合物的分離介質。表面修飾浸鍍溶液共有三種:分別是偏氟乙烯六氟丙烯共聚物 (PVDF-HFP)與1H, 1H, 2H, 2H-全氟癸基三乙氧基矽烷 (FAS-17)、正辛基三乙氧基矽烷 (AS)、及疏水改質的二氧化矽奈米粒子 (HM-SiO2)等混合的溶液。表面的濕潤特性,則由靜態接觸角及傾斜角的測量鑑定,並且依照表面對水之黏著模式區分為: Cassie, Meta及Wenzel等三種型態。此外,也訂定三個油-水分離的指標:分離效率、分離速率及分離選擇率,用以評估分離膜及吸收綿的油-水分離效能。
	實驗結果顯示,聚酯纖維紡織品經由PVDF-HFP/FAS-17=1/0.5及PVDF-HFP/HM-SiO2=1/x (x=0.5, 0.8)浸鍍改質後,三種表面皆呈現疏水/親油性質。前者及x=0.8的表面為Wenzel黏著型態,x=0.5的表面則為Meta黏著型態。三者應用於甲苯-水分層混合物的分離,效率皆高達98%以上。三聚氰胺泡綿經由PVDF-HFP/AS=1/0.5及PVDF-HFP/HM-SiO2=1/x (x=0.4, 0.5)浸鍍改質後,表面也呈現疏水/親油性質。前者及x=0.4的表面為Wenzel黏著型態, x=0.5則為Meta黏著型態。三者應用於甲苯在水中(O/W)乳液的分離,效率皆高達97%以上。
	對於分層油-水混合物分離速率及選擇率的影響因素,分離速率受黏著型態影響較小,主要是受到分離膜孔徑的影響。含奈米粒子的浸鍍液使得分離膜孔徑變小,導致分離速率較低。選擇率則不受表面黏著型態及分離膜孔徑的影響。至於乳化油-水混合物的分離,分離速率會受表面黏著型態影響。Wenzel黏著型態的吸收綿,與水有較好的接觸,使得包覆在水裡的油滴得以快速的被吸收,分離速率較大,選擇率則變低。Meta黏著型態的吸收綿,則是分離速率變小,選擇率則較高。而吸收綿的孔徑亦會影響分離速率,含奈米粒子的浸鍍液使得吸收綿孔徑變小,導致分離速率較低。選擇率則受吸收綿孔徑的影響較小。
Different from traditional methods, oil-water separation based on the materials with special wettability is strongly advocated. In this work, polyester fabric and melamine sponge were used as the substrates for surface modifications with the aims to separate stratified and emulsified, respectively, oil-water mixtures. Hydrophobic/oleophilic surface properties were achieved by dipping the substrates in three kinds of solutions including: PVDF-HFP/FAS-17, PVDF-HFP/AS, and PVDF-HFP/HM-SiO2 mixtures with various ratios. Static and sliding contact angles were measured and wetting behavior was classified into Wenzel, Meta, and Cassie modes. Furthermore, separation efficiency, rate, and selectivity were proposed as three indices to evaluate the separation performance. 
   Experimental results of stratified toluene-water mixture separation revealed that higher than 98% efficiencies exhibited by fabric separation membranes treated with PVDF-HFP/FAS-17=1/0.5 and PVDF-HFP/HM-SiO2=1/x (x=0.3, 0.5, 0.8). Membrane pore size reduced by the deposition of HM-SiO2 nanoparticles has stronger effect on separation rate than the membrane wetting mode. Pore size and wetting mode of membrane, however, have little effect on separation selectivity. 
   For separation of toluene-in-water emulsion, higher than 97% efficiencies were exhibited by melamine sponge treated with PVDF-HFP/AS=1/0.5 and PVDF-HFP/HM-SiO2=1/x (x=0.4, 0.5, 2). Separation rate is affected by pore size of sponge and wetting mode of surface. Higher separation rates were exhibited by sponge surfaces with Wenzel wetting mode than Meta mode. Smaller pore size of sponge also leads to a smaller separation rate. Separation selectivity is affected more by surface wetting mode than pore size.
Keywords: Superhydrophobic/superoleophilic surface; Polyester separation membrane; Melamine absorption sponge; Oil-water separation; Surface wetting mode.
1.	Y. X. Wu, and J. Y. Xu: Oil and water separation technology. Advances in Mechanics, 45 (2015).
2.	X. D. Chen, W. W. Hou, J. Chen, and J. Huang: Research on corrosion prevention tech-nology in heating coils of settling tank in Shanbei oil field. Corrosion Science and Protection Technology, 26, 191 (2014).
3.	X. F. Tan: Study on demulsification of crude oil emulsions via ultrasonic irradiation. Master Thesis, Tianjin University (2007).
4.	Q. Guo-Kun: Analysis on factors influencing crude oil demulsification effectiveness by ultrasonic wave. Petroleum Geology and Recovery Efficiency, 12, 76 (2005).
5.	G. Ye, X. Lu, P. Han, and X. Shen: Desalting and dewatering of crude oil in ultrasonic standing wave field. Journal of Petroleum Science and Engineering, 70, 140 (2010).
6.	B. P. Singh: Laboratory test results on ultrasound treated industrial emulsion. Acoustics Letters, 19, 78 (1995).
7.	B. E. P. Com, D. D. Rou, and X. G. Despau: Emulsion characterization by focused ultrasonic waves. Ultra-sonics, 39, 329 (2001).
8.	B. J. Sun, D. C. Yan, W. X. Qiao: The study of demulsification with ultrasonic irradiation on oil emulsion. Acta Acustica, 24, 327 (1999).
9.	W. Yang, and X. Y. Fu: Application of ultrasonic demulsificaion dehydration technology in Tahe Oilfield. Natural Gasand Oil, 32, 23 (2014).
10.	G. X. Ye, and P. F. Han: Application of ultrasonic on refinery crude oil dewatering and desalting. Acta Petrolei Sinica, 25, 119 (2009).
11.	L. Zhu, B. S. Xiong, and Z. Qu: Research in the viscosity reduction of magnetic treatment on crude oil. Oil-Gasfield Surface Engineering, 3, 26 (1994).
12.	R. Tao, and X. Xu: Reducing the viscosity of crude oil by pulsed electric or magnetic field. Energy & fuels, 20, 2046 (2006).
13.	G. L. Li, L. J. Guo: Flow patterns of oil-water liquid-liquid two-phase flow in helically coiled tubes. CIESC Journal, 51, 239 (2000).
14.	Y. Zhou, Y. X. Wu, Z. C. Zheng, Q. S. Liu, and Q. P. Li: Research on oil-water separation technique1 numerical simulation in both straight and helical pipes. Journal of Hydrodynamics, 19, 540 (2004).
15.	C. Y. Li, X. Liu: Numerical simulation on oil-water separation in spiral pipe after different flow velocity. Journal of Liaoning Shihua University, 32, 32 (2012).
16.	D. T. Gong, Y. X. Wu, Z. C. Zheng, J. Guo, J. Zhang, and C. Tang: Numerical simulation of the oil-water two-phase flow in a helical tube with variable mass flow rates. Journal of Hydrodynamics, 21, 640 (2006).
17.	W. S. Barnickel: Process for treating crude oil, US, 1093098 (1914).
18.	N. Xia: Experimental research of coarse graining technology in improving the efficiency of oil-water separation. Master Thesis, Northeast Petroleum University (2012).
19.	N. Nadarajah, A. Singh, and O. P. Ward: Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World Journal of Microbiology and Biotechnology, 18, 435 (2002).
20.	G. Kwon, E. Post, and A. Tuteja: Membranes with selective wettability for the separation of oil–water mixtures. MRS communications, 5, 475 (2015).
21.	R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi: Oil/water separation techniques: a review of recent progresses and future directions. J. Mater. Chem. A, 5, 16025 (2017).
22.	L. Feng, Z. Y. Zhang, Z. H. Mai, Y. M. Ma, B. Q. Liu, L. Jiang, and D.B. Zhu: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed., 116, 2046 (2004).
23.	J. Wu, J. Chen, K. Qasim, J. Xia, W. Lei, and B.P. Wang: A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol., 87, 427 (2012).
24.	A. Tuteja, W. Choi, M.L. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G. H. McKinley, and R.E. Cohen: Designing superoleophobic surfaces. Science, 318, 1618 (2007).
25.	Q. J. Wang, Z. Cui, Y. Mao, and Q.M. Chen: Stable highly hydrophobic and oleophilic meshes for oil–water separation. Appl. Surf. Sci., 253, 9054 (2007).
26.	Y. Z. Cao, X. Y. Zhang, L. Tao, K. Li, Z. X. Xue, L. Feng, and Y. Wei: Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater Interfaces, 5, 4438 (2013).
27.	S. T. Wang, Y. L. Song, and L. Jiang: Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology, 18, 015103 (2007).
28.	B. Wang and Z. G. Guo: Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl. Phys. Lett., 103, 063704 (2013).
29.	C. X. Wang, T. J. Yao, J. Wu, C. Ma, Z. X. Fan, Z. Y. Wang, Y. R. Cheng, Q. Lin, and B. Yang: Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interfaces, 1, 2613 (2009).
30.	Y. W. Shang, Y. Si, A. Raza, L. P. Yang, X. Mao, B. Ding, and J. Y. Yu: An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale, 4, 7847 (2012).
31.	X. M. Tang, Y. Si, J. L. Ge, B. Ding, L. F. Liu, G. Zheng, W. J. Luo, and J. Y. Yu: In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale, 5, 11657 (2013).
32.	M. L. Huang, Y. Si, X. M. Tang, Z. G. Zhu, B. Ding, L. F. Liu, G. Zheng, W. J. Luo, and J. Y. Yu: Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A, 1, 14071  (2013).
33.	W. B. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang: Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater., 25, 2071  (2013).
34.	S. H. Wang, M. Li, and Q. H. Lu: Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interfaces, 2, 677 (2010).
35.	C. Du, J. D. Wang, Z. F. Chen, and D. R. Chen: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci., 313, 304 (2014).
36.	A. Asthana, T. Maitra, R. Buchel, M.K. Tiwari, and D. Poulikakos: Multifunctional superhydrophobic polymer/carbon nanocomposites: ACS Appl. Mater. Interfaces, 6, 8859 (2014).
37.	J. P. Zhang and S. Seeger: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater., 21, 4699 (2011).
38.	J. Li, L. Shi, Y. Chen, Y. B. Zhang, Z. G. Guo, B. L. Su, and W. M. Liu: Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J. Mater. Chem., 22, 9774 (2012).
39.	M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang: Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater., 21, 665 (2009).
40.	Z. X. Xue, S. T. Wang, L. Lin, L. Chen, M. J. Liu, L. Feng, and L. Jiang: A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater., 23, 4270 (2011).
41.	C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, and L. Jiang: Underwater selfcleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures. Adv. Mater. Interfaces, 1, 1400099 (2014).
42.	S. Y. Zhang, F. Lu, L. Tao, N. Liu, C. R. Gao, L. Feng, and Y. Wei: Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad ph range and hyper-saline environments. ACS Appl. Mater. Interfaces, 5, 11971 (2013).
43.	F. Lu, Y. N. Chen, N. Liu, Y. Z. Cao, L. X. Xu, Y. Wei, and L. Feng: A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil– water separation. RSC Adv., 4, 32544 (2014).
44.	B. X. Jing, H. T. Wang, K. Y. Lin, P. J. McGinn, C. Z. Na, and Y. X. Zhu: A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. Polymer, 54, 5771 (2013).
45.	Y. Dong, J. Li, L. Shi, X. B. Wang, Z. G. Guo, and W. M. Liu: Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem. Commun., 50, 5586 (2014).
46.	Q. Wen, J. C. Di, L. Jiang, J. H. Yu, and R. R. Xu: Zeolite-coated mesh film for efficient oil–water separation. Chem. Sci., 4, 591 (2013). 
47.	N. Liu, Y. N. Chen, F. Lu, Y. Z. Cao, Z. X. Xue, K. Li, L. Feng, and Y. Wei: Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. Chemphyschem, 14, 3489 (2013).
48.	Y. Z. Zhu, F. Zhang, D. Wang, X. F. Pei, W. B. Zhang, and J. Jin: A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A, 1, 5758 (2013).
49.	H. C. Yang, K. J. Liao, H. Huang, Q. Y. Wu, L. S. Wan, and Z. K. Xu: Musselinspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A, 2, 10225 (2014).
50.	H. C. Yang, J. K. Pi, K. J. Liao, H. Huang, Q. Y. Wu, X. J. Huang, and Z. K. Xu: Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces, 6, 12566 (2014).
51.	F. E. Ahmed, B. S. Lalia, N. Hilal, and R. Hashaikeh: Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination, 344, 48 (2014).
52.	A. Raza, B. Ding, G. Zainab, M. El-Newehy, S. S. Al-Deyab, and J. Y. Yu: In situ cross-linked superwetting nanofibrous membranes for ultrafast oil– water separation. J. Mater. Chem. A, 2, 10137 (2014).
53.	Q. S. Liu, A. A. Patel, and L. Y. Liu: Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil–water separation. ACS Appl. Mater. Interfaces, 6, 8996 (2014).
54.	Y. N. Chen, Z. X. Xue, N. Liu, F. Lu, Y. Z. Cao, Z. X. Sun, and L. Feng: Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions. RSC Adv., 4, 11447 (2014).
55.	L. B. Zhang, Y. J. Zhong, D. Cha, and P. Wang: A self-cleaning underwater superoleophobic mesh for oil–water separation. Sci. Rep., 3, 2326 (2013).
56.	J. Yang, Z. Z. Zhang, X. H. Xu, X. T. Zhu, X. H. Men, and X. Y. Zhou: Superhydrophilic-superoleophobic coatings. J. Mater. Chem., 22, 2834 (2012).
57.	J. Yang, H. J. Song, X. H. Yan, H. Tang, and C. S. Li: Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose, 21, 1851 (2014).
58.	X. Y. Zhu, H. E. Loo, and R. B. Bai: A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci., 436, 47 (2013).
59.	X. Y. Zhu, W. T. Tu, K. H. Wee, and R. B. Bai: Effective and low fouling oil/ water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci., 466, 36 (2014).
60.	W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu, and L. Feng: Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/Water Mixture to Emulsion Separation. Adv. Mater. Interfaces, 1700029 (2017).
61.	W. Barthlott, and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1 (1997).
62.	C. Neinhuis, and W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667 (1997).
63.	J. Zimmermann, S. Seeger, and F. A. Reifler: Water shedding angle: a new technique to evaluate the water repellent properties of superhydrophobic surfaces. Textile Research Journal, 79, 1565 (2009).
64.	Z. Chu, and S. Seeger: Superamphiphobic surfaces. Chemical Society Reviews, 43, 2784 (2014).
65.	S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai: A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5, 31 (2017).
66.	R. N. Wenzel: Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28, 988 (1936).
67.	A. Cassie, and S. Baxter: Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546 (1944).
68.	X. Feng, and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18, 3063 (2006).
69.	E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko: Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98 (2013).
70.	X. Liu, Y. Liang, F. Zhou, and W. Liu: Extreme wettability and tunable adhesion: biomimicking beyond nature. Soft Matter, 8, 2070 (2012).
71.	J. Bico, U. Thiele, and D. Quéré: Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 41 (2002).
72.	A. Tuteja, W. Choi, and M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen: Designing superoleophobic surfaces. Science, 318, 1618 (2007)
73.	H. Sun, Y. Xu, Y. Zhou, W. Gao, H. Zhao, and W. Wang: Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly(vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticlesJ. Appl. Polym. Sci., 134 (2017).
74.	C. H. Xue, Y. R. Li., J. L. Hou, L. Zhang, J. Z. Ma and S. T. Jia: Self-roughened superhydrophobic coatings for continuous oil–water separation. J. Mater. Chem. A, 3, 10248 (2015).
75.	S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guan, and J. Zhang: Durable superhydrophobic cotton fabric for oil/water separation Colloids. Sur. A, 533, 249 (2017).
76.	C. J. Chen, W. H. Li, W. Y. Chen and Y. M. Yang: Fabrication of Multifunctional Polyester Fabrics by Using Fluorinated Polymer Coatings. Fibers and Polymers, accepted, 20 May 2019.
77.	S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, and Y. Lai: Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chem. Eng. J., 333, 621 (2018).
78.	C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab and Y. Lai: Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A, 4, 12179 (2016).