簡易檢索 / 詳目顯示

研究生: 陳威宇
Chen, Wei-Yu
論文名稱: 基於超疏水/超親油性質材料的油-水分離方法
Oil-water separation methods based on materials with superhydrophobic/superoleophilic properties
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 136
中文關鍵詞: 超疏水/超親油表面表面黏著型態油-水分離聚酯纖維分離膜三聚氰胺吸收綿
外文關鍵詞: Superhydrophobic/superoleophilic surface, Polyester separation membrane, Melamine absorption sponge, Oil-water separation, Surface wetting mode
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有別於傳統的油-水分離方法,利用材料表面特殊濕潤性質,可望達成開發高效率、省能源、快速且簡易的新穎油-水分離程序的目標。本研究以聚酯纖維紡織品及三聚氰胺泡綿為基材,進行超疏水/超親油的表面修飾處理,進而分別做為分層 (stratified)及乳化 (emulsified)的油-水混合物的分離介質。表面修飾浸鍍溶液共有三種:分別是偏氟乙烯六氟丙烯共聚物 (PVDF-HFP)與1H, 1H, 2H, 2H-全氟癸基三乙氧基矽烷 (FAS-17)、正辛基三乙氧基矽烷 (AS)、及疏水改質的二氧化矽奈米粒子 (HM-SiO2)等混合的溶液。表面的濕潤特性,則由靜態接觸角及傾斜角的測量鑑定,並且依照表面對水之黏著模式區分為: Cassie, Meta及Wenzel等三種型態。此外,也訂定三個油-水分離的指標:分離效率、分離速率及分離選擇率,用以評估分離膜及吸收綿的油-水分離效能。
    實驗結果顯示,聚酯纖維紡織品經由PVDF-HFP/FAS-17=1/0.5及PVDF-HFP/HM-SiO2=1/x (x=0.5, 0.8)浸鍍改質後,三種表面皆呈現疏水/親油性質。前者及x=0.8的表面為Wenzel黏著型態,x=0.5的表面則為Meta黏著型態。三者應用於甲苯-水分層混合物的分離,效率皆高達98%以上。三聚氰胺泡綿經由PVDF-HFP/AS=1/0.5及PVDF-HFP/HM-SiO2=1/x (x=0.4, 0.5)浸鍍改質後,表面也呈現疏水/親油性質。前者及x=0.4的表面為Wenzel黏著型態, x=0.5則為Meta黏著型態。三者應用於甲苯在水中(O/W)乳液的分離,效率皆高達97%以上。
    對於分層油-水混合物分離速率及選擇率的影響因素,分離速率受黏著型態影響較小,主要是受到分離膜孔徑的影響。含奈米粒子的浸鍍液使得分離膜孔徑變小,導致分離速率較低。選擇率則不受表面黏著型態及分離膜孔徑的影響。至於乳化油-水混合物的分離,分離速率會受表面黏著型態影響。Wenzel黏著型態的吸收綿,與水有較好的接觸,使得包覆在水裡的油滴得以快速的被吸收,分離速率較大,選擇率則變低。Meta黏著型態的吸收綿,則是分離速率變小,選擇率則較高。而吸收綿的孔徑亦會影響分離速率,含奈米粒子的浸鍍液使得吸收綿孔徑變小,導致分離速率較低。選擇率則受吸收綿孔徑的影響較小。

    Different from traditional methods, oil-water separation based on the materials with special wettability is strongly advocated. In this work, polyester fabric and melamine sponge were used as the substrates for surface modifications with the aims to separate stratified and emulsified, respectively, oil-water mixtures. Hydrophobic/oleophilic surface properties were achieved by dipping the substrates in three kinds of solutions including: PVDF-HFP/FAS-17, PVDF-HFP/AS, and PVDF-HFP/HM-SiO2 mixtures with various ratios. Static and sliding contact angles were measured and wetting behavior was classified into Wenzel, Meta, and Cassie modes. Furthermore, separation efficiency, rate, and selectivity were proposed as three indices to evaluate the separation performance.
    Experimental results of stratified toluene-water mixture separation revealed that higher than 98% efficiencies exhibited by fabric separation membranes treated with PVDF-HFP/FAS-17=1/0.5 and PVDF-HFP/HM-SiO2=1/x (x=0.3, 0.5, 0.8). Membrane pore size reduced by the deposition of HM-SiO2 nanoparticles has stronger effect on separation rate than the membrane wetting mode. Pore size and wetting mode of membrane, however, have little effect on separation selectivity.
    For separation of toluene-in-water emulsion, higher than 97% efficiencies were exhibited by melamine sponge treated with PVDF-HFP/AS=1/0.5 and PVDF-HFP/HM-SiO2=1/x (x=0.4, 0.5, 2). Separation rate is affected by pore size of sponge and wetting mode of surface. Higher separation rates were exhibited by sponge surfaces with Wenzel wetting mode than Meta mode. Smaller pore size of sponge also leads to a smaller separation rate. Separation selectivity is affected more by surface wetting mode than pore size.
    Keywords: Superhydrophobic/superoleophilic surface; Polyester separation membrane; Melamine absorption sponge; Oil-water separation; Surface wetting mode.

    摘要 II Extended Abstract IV 致謝 XXIX 目錄 XXX 表目錄 XXXV 圖目錄 XXXVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與研究目的 1 第二章 文獻回顧 3 2.1 傳統油-水分離方法 3 2.1.1 傳統油-水分離方法-物理方法 4 2.1.2 傳統油-水分離方法-化學方法 10 2.1.3 傳統油-水分離方法-物理化學方法 11 2.1.4 傳統油-水分離方法-生物方法 12 2.2 基於特殊濕潤性質之油-水分離應用 13 2.2.1 超疏水/超親油表面 15 2.2.2 超親水/超親油表面 24 2.2.3 超親水/超疏油表面 32 2.2.4 超疏水/超疏油表面 34 2.3 超疏水/超親油表面製備 35 2.4 超疏水表面理論 37 2.4.1 蓮花效應(Lotus effect) 37 2.4.2 超疏水表面之表徵 41 2.4.3 楊氏(Young)方程式 44 2.4.4 溫佐(Wenzel)方程式 45 2.4.5 卡西-巴斯特(Cassie and Baxter)方程式 46 2.4.6 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 47 2.4.7 傾斜角與表面濕潤性質之關係 49 2.5 二氧化矽疏水改質 50 2.6 超疏水/超親油紡織品應用於油-水分離 52 2.7 超疏水/超親油海綿應用於油-水分離 55 2.8 不同的表面濕潤狀態對油-水分離應用的影響 57 第三章 實驗內容 60 3.1 分離膜及吸收綿基材 60 3.2 實驗藥品 60 3.2.1 製備疏水改質二氧化矽奈米粒子 60 3.2.2 製備用於表面疏水親油改質之浸鍍液 61 3.2.3 測試液體 62 3.2.4 製備乳化液所需之界面活性劑 63 3.3 儀器設備與裝置 63 3.3.1 Milli-Q超純水系統 63 3.3.2加熱攪拌器 (Hot plate stirrer) 64 3.3.3 箱型高溫爐 (Muffle furnace) 65 3.3.4 掃描式電子顯微鏡 (Scanning electron microscope) 65 3.3.5 接觸角分析儀 (Contact angle measure analyzer) 67 3.3.6 總有機碳分析儀 (Total Organic Carbon Analyzer, TOC) 69 3.4 實驗方法 70 3.4.1 疏水化改質SiO2奈米粒子(HM-SiO2)製備 70 3.4.2 表面疏水親油改質之浸鍍液的配製(無奈米粒子) 71 3.4.3 表面疏水親油改質之浸鍍液的配製(有奈米粒子) 72 3.4.4 以浸塗法(Dip-coating)塗佈聚酯纖維紡織品 72 3.4.5 以浸塗法(Dip-coating)塗佈三聚氰胺吸收綿 72 3.5 油水分離效能三大指標....................................................................73 第四章 結果與討論 74 4.1 製備超疏水/超親油紡織品應用分層油-水混合物分離 75 4.1.1 聚酯纖維紡織品塗佈PVDF-HFP/FAS-17之濕潤性質 75 4.1.2 聚酯纖維紡織品塗佈PVDF-HFP/FAS-17之表面型態 78 4.1.3 聚酯纖維紡織品塗佈PVDF-HFP/HM-SiO2之濕潤性質 80 4.1.4 聚酯纖維紡織品塗佈PVDF-HFP/HM-SiO2之表面型態 83 4.1.5 分層油-水混合物 85 4.1.6 分層油-水混合物分離 86 4.2 製備超疏水/超親油海綿應用乳化油-水混合物分離 96 4.2.1 三聚氰胺吸收綿塗佈PVDF-HFP/FAS-17、PVDF-HFP/AS之濕潤性質 96 4.2.2 三聚氰胺吸收綿塗佈PVDF-HFP/AS之表面型態 100 4.2.3 三聚氰胺吸收綿塗佈PVDF-HFP/HM-SiO2之濕潤型態 102 4.2.4 三聚氰胺吸收綿塗佈PVDF-HFP/HM-SiO2之表面型態 105 4.2.5 乳化油-水混合物 107 4.2.6 乳化油-水混合物分離 108 4.3 影響分離效能之因素 120 4.3.1 表面黏著型態的調控 120 4.3.2 影響分層油-水混合物分離效能的因素 123 4.3.3 表面黏著型態對於乳化油-水混合物分離效能的影響 125 第五章 結論與建議 127 5.1 結論 127 5.2 建議 130 5.2.1 分層油水混合物分離 130 5.2.2 乳化油水混合物分離 130 第六章 參考文獻 131   表目錄 表4-1. 塗佈PVDF-HFP/ FAS-17之表面的疏液結果。 76 表4-2. 塗佈PVDF-HFP/ HM-SiO2之表面的疏液結果。 81 表4-3. 經由不同浸鍍液改質之聚酯纖維紡織品的油-水分離效率。 95 表4-4. 經由不同浸塗液改質之聚酯纖維紡織品的油-水分離效能。 95 表4-5. 塗佈無奈米粒子高分子溶液之表面的疏液結果。 98 表4-6 塗佈PVDF-HFP/ HM-SiO2之表面的疏液結果。 103 表4-7. 塗佈PVDF-HFP/AS=1/0.5的三聚氰胺吸收綿於分離乳化油-水混合物前後重量。 115 表4-8. 塗佈PVDF-HFP/HM-SiO2=1/2的三聚氰胺吸收綿於分離乳化油-水混合物前後重量。 115 表4-9. 塗佈PVDF-HFP/HM-SiO2=1/0.5的三聚氰胺吸收綿於分離乳化油-水混合物前後重量。 115 表4-10. 塗佈PVDF-HFP/AS=1/0.4的三聚氰胺吸收綿於分離乳化油-水混合物後剩餘液及吸收液的組成。 115 表4-11. 塗佈PVDF-HFP/HM-SiO2=1/0.5的三聚氰胺吸收綿於分離乳化油-水混合物後剩餘液及吸收液的組成。 117 表4-12. 塗佈PVDF-HFP/HM-SiO2=1/2的三聚氰胺吸收綿於分離乳化油-水混合物後剩餘液及吸收液的組成。 117 表4-13. 塗佈PVDF-HFP/HM-SiO2=1/0.5的三聚氰胺吸收綿於分離乳化油-水混合物後剩餘液及吸收液的組成。 117 表4-14. 塗佈PVDF-HFP/HM-SiO2=1/0.4的三聚氰胺吸收綿於分離乳化油-水混合物後剩餘液及吸收液的組成。 117 表4-15. 塗佈不同浸塗液的三聚氰胺吸收綿於分離乳化油-水混合物之分離效能。 119 表4-16. 表面黏著型態對分層油-水混合物分離效能的影響。 124 表4-17. 浸塗液種類對分層油-水混合物分離效能的影響。 124 表4-18. 表面黏著型態對乳化油-水混合物分離效能的影響。 126 表4-19. 浸塗液種類對乳化油-水混合物分離效能的影響。 126   圖目錄 圖2-1. 水力螺旋器。1 7 圖2-2. 螺旋管結構及相分布示意圖。16 8 圖2-3. 臥式噴射式氣浮機結構。1 9 圖2-4. 四種不同的特殊表面濕潤性質。20 14 圖2-5. 對於油-水分離應用上的材料。21 14 圖2-6. 實際應用上傾斜45 o以利於密度較水低的柴油得以接觸表面。22 16 圖2-7. NDM改質之不銹鋼網製備方法。 17 圖2-8. 氯仿/水的分層油-水混合物經由改質後的銅網進行分離。28 18 圖2-9. 柴油/水的分層油-水混合物經由改質後的銅網進行分離。29 19 圖2-10. 二氯甲烷/水的分層油-水混合物經由F-PBZ膜進行分離。30 20 圖2-11. (a) F-PBZ/Al2O3膜製備 (b) 石油醚/水的含界面活性劑油包水乳化液分離 (c) 經由光學顯微鏡可看出分離後的液體毫無水滴。32 21 圖2-12. 水/二氯甲烷之水包油乳化液經過改質的聚丙烯膜分離後,可由混濁狀變為澄清。49 28 圖2-13. Yang et al. (2014) 改質的膜對不同含界面活性劑水包油乳化液之分離結果。50 28 圖2-14. 自潔性測試。55 31 圖2-15. 圖2-15. 特殊表面濕潤性質應用於油-水分離的機制。60 35 圖2-16. 不同表面能之表面濕潤情形。 36 圖2-17. 八種植物表面在經過沖刷後,灰塵殘留在表面上的比例。61 39 圖2-18. 在SEM影像中觀察不同葉面結構圖: (a) 平坦的植物Gnetum 表面,比例尺為100μm,(b) 粗糙的蓮花 (Nelumbo nucifera) 表面,比例尺為20μm。61 39 圖2-19. 水在平坦與粗糙表面上對灰塵造成的影響示意圖 (a)水的流動使灰塵產生位移,但無法完全帶走 (b)水的滾動會連同灰塵一併帶離表面。61 40 圖2-20. 圖2-20. (a)靜態接觸角(θ);(b)前進接觸角(θA)以及後退接觸角(θR);(c)(d)傾斜角(θSA)的示意圖。 42 圖2-21. 液體於平坦表面上的潤濕行為。 44 圖2-22. 液體於不同表面結構上的潤濕行為。 48 圖2-23. 液體於不同表面結構上的潤濕行為與其對應之傾斜角。 49 圖2-24. 將SiO2經由矽烷化疏水改質枝製備流程。73 50 圖2-25. 不同矽烷改質之SiO2疏水狀況。73 51 圖2-26. 油-水分離狀況。(油經由染色成橘色)74 52 圖2-27. 乳化液在分離前後之情形。75 53 圖2-28. 油-水分離流程圖。76 54 圖2-29. 對(a)水及(b)油在不同次分離程序上的分離效率。76 54 圖2-30. 海綿外部及內部的表面可疏水使其成為液滴狀。77 55 圖2-31. 乳化液在經由改質後的海綿分離前後的狀況。77 56 圖2-32. 圖2-32. PDMS在不同濃度下對表面濕潤性質之影響。78 58 圖2-33. Cassie state表面分離分層油-水混合物。78 58 圖2-34. Wenzel state表面分離水包油的油-水乳化物。78 58 圖3-1. Milli-Q超純水系統。 64 圖3-2. 箱型高溫爐。 65 圖3-3. 掃描式電子顯微鏡。 67 圖3-4. 接觸角分析儀。 68 圖3-5. 二氧化矽疏水改質流程圖。 71 圖4-1. 塗佈PVDF-HFP/ FAS-17之表面的疏液結果。 77 圖4-2. 聚酯纖維紡織品塗佈各種高分子溶液之表面SEM上視圖: (a)未塗佈; (b)塗佈PVDF-HFP/FAS-17=1:0.5; (c)塗佈PVDF-HFP/FAS-17=1:0.8; (d)塗佈PVDF-HFP/FAS-17=1:1.5 之聚酯纖維紡織品。 79 圖4-3. 塗佈PVDF-HFP/ HM-SiO2之表面的疏液結果。 82 圖4-4. 聚酯纖維紡織品塗佈PVDF-HFP/HM-SiO2=1:x之表面SEM上視圖: (a)x=0.3; (b)x=0.4; (c)x=0.5; (d)x=0.8; (e)x=1; (f)x=1。 84 圖4-5. 分層油-水混合物。(油體為甲苯,經過染色處理而呈紫黑色) 85 圖4-6. 分層油-水混合物分離裝置。 86 圖4-7. 聚酯纖維紡織品塗佈各種高分子溶液之疏水性測試。 88 圖4-8. 塗佈PVDF-HFP/FAS-17=1/0.5的聚酯纖維紡織品於分層油-水混合物分離結果 89 圖4-9. 塗佈PVDF-HFP/FAS-17=1/0.3的聚酯纖維紡織品於分層油-水混合物分離結果 90 圖4-10. 塗佈PVDF-HFP/HM-SiO2=1/0.5的聚酯纖維紡織品於分層油-水混合物分離結果。 91 圖4-11. 塗佈PVDF-HFP/HM-SiO2=1/0.8的聚酯纖維紡織品於分層油-水 混合物分離結果。 92 圖4-12. (a)分離完燒杯剩下澄清透明的水 (b)分離完後瓶子內僅有甲苯。 94 圖4-13. 塗佈無奈米粒子高分子溶液之表面的疏液結果。 99 圖4-14. 三聚氰胺吸收綿塗佈各種高分子溶液之表面SEM上視圖: (a)未塗佈; (b)塗佈PVDF-HFP/AS=1:0.5; (c)塗佈PVDF-HFP/AS=1:1; (d)塗佈PVDF-HFP/AS=1:2。 101 圖4-15. 塗佈PVDF-HFP/ HM-SiO2之表面的疏液結果。 104 圖4-16. 三聚氰胺吸收綿塗佈PVDF-HFP/HM-SiO2=1:x之表面SEM上視圖: (a)x=0.3; (b)x=0.4; (c)x=0.5; (d)x=1。 106 圖4-17. 水/甲苯之水包油乳化液隨時間的分散情形。 107 圖4-18. 海綿在改質前後對於水跟甲苯的親疏液性質。 108 圖4-19 塗佈PVDF-HFP/AS=1/0.5的三聚氰胺吸收綿於分離乳化油-水混合物各時間的狀況。 109 圖4-20. 塗佈PVDF-HFP/HM-SiO2=1/2的三聚氰胺吸收綿於分離乳化油-水混合物各時間的狀況。 110 圖4-21. 塗佈PVDF-HFP/HM-SiO2=1/0.5的三聚氰胺吸收綿於分離乳化油-水混合物各時間的狀況。 111 圖4-22. 塗佈PVDF-HFP/HM-SiO2=1/0.4的三聚氰胺吸收綿於分離乳化油-水混合物各時間的狀況。 112 圖4-23. 不同浸塗液組成下的聚酯纖維紡織品之傾斜角及表面黏著型態。 120 圖4-24. 不同浸塗液組成下的三聚氰胺吸收綿之傾斜角及表面黏著型態。 121

    1. Y. X. Wu, and J. Y. Xu: Oil and water separation technology. Advances in Mechanics, 45 (2015).
    2. X. D. Chen, W. W. Hou, J. Chen, and J. Huang: Research on corrosion prevention tech-nology in heating coils of settling tank in Shanbei oil field. Corrosion Science and Protection Technology, 26, 191 (2014).
    3. X. F. Tan: Study on demulsification of crude oil emulsions via ultrasonic irradiation. Master Thesis, Tianjin University (2007).
    4. Q. Guo-Kun: Analysis on factors influencing crude oil demulsification effectiveness by ultrasonic wave. Petroleum Geology and Recovery Efficiency, 12, 76 (2005).
    5. G. Ye, X. Lu, P. Han, and X. Shen: Desalting and dewatering of crude oil in ultrasonic standing wave field. Journal of Petroleum Science and Engineering, 70, 140 (2010).
    6. B. P. Singh: Laboratory test results on ultrasound treated industrial emulsion. Acoustics Letters, 19, 78 (1995).
    7. B. E. P. Com, D. D. Rou, and X. G. Despau: Emulsion characterization by focused ultrasonic waves. Ultra-sonics, 39, 329 (2001).
    8. B. J. Sun, D. C. Yan, W. X. Qiao: The study of demulsification with ultrasonic irradiation on oil emulsion. Acta Acustica, 24, 327 (1999).
    9. W. Yang, and X. Y. Fu: Application of ultrasonic demulsificaion dehydration technology in Tahe Oilfield. Natural Gasand Oil, 32, 23 (2014).
    10. G. X. Ye, and P. F. Han: Application of ultrasonic on refinery crude oil dewatering and desalting. Acta Petrolei Sinica, 25, 119 (2009).
    11. L. Zhu, B. S. Xiong, and Z. Qu: Research in the viscosity reduction of magnetic treatment on crude oil. Oil-Gasfield Surface Engineering, 3, 26 (1994).
    12. R. Tao, and X. Xu: Reducing the viscosity of crude oil by pulsed electric or magnetic field. Energy & fuels, 20, 2046 (2006).
    13. G. L. Li, L. J. Guo: Flow patterns of oil-water liquid-liquid two-phase flow in helically coiled tubes. CIESC Journal, 51, 239 (2000).
    14. Y. Zhou, Y. X. Wu, Z. C. Zheng, Q. S. Liu, and Q. P. Li: Research on oil-water separation technique1 numerical simulation in both straight and helical pipes. Journal of Hydrodynamics, 19, 540 (2004).
    15. C. Y. Li, X. Liu: Numerical simulation on oil-water separation in spiral pipe after different flow velocity. Journal of Liaoning Shihua University, 32, 32 (2012).

    16. D. T. Gong, Y. X. Wu, Z. C. Zheng, J. Guo, J. Zhang, and C. Tang: Numerical simulation of the oil-water two-phase flow in a helical tube with variable mass flow rates. Journal of Hydrodynamics, 21, 640 (2006).
    17. W. S. Barnickel: Process for treating crude oil, US, 1093098 (1914).
    18. N. Xia: Experimental research of coarse graining technology in improving the efficiency of oil-water separation. Master Thesis, Northeast Petroleum University (2012).
    19. N. Nadarajah, A. Singh, and O. P. Ward: Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World Journal of Microbiology and Biotechnology, 18, 435 (2002).
    20. G. Kwon, E. Post, and A. Tuteja: Membranes with selective wettability for the separation of oil–water mixtures. MRS communications, 5, 475 (2015).
    21. R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi: Oil/water separation techniques: a review of recent progresses and future directions. J. Mater. Chem. A, 5, 16025 (2017).
    22. L. Feng, Z. Y. Zhang, Z. H. Mai, Y. M. Ma, B. Q. Liu, L. Jiang, and D.B. Zhu: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed., 116, 2046 (2004).
    23. J. Wu, J. Chen, K. Qasim, J. Xia, W. Lei, and B.P. Wang: A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol., 87, 427 (2012).
    24. A. Tuteja, W. Choi, M.L. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G. H. McKinley, and R.E. Cohen: Designing superoleophobic surfaces. Science, 318, 1618 (2007).
    25. Q. J. Wang, Z. Cui, Y. Mao, and Q.M. Chen: Stable highly hydrophobic and oleophilic meshes for oil–water separation. Appl. Surf. Sci., 253, 9054 (2007).
    26. Y. Z. Cao, X. Y. Zhang, L. Tao, K. Li, Z. X. Xue, L. Feng, and Y. Wei: Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater Interfaces, 5, 4438 (2013).
    27. S. T. Wang, Y. L. Song, and L. Jiang: Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology, 18, 015103 (2007).
    28. B. Wang and Z. G. Guo: Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl. Phys. Lett., 103, 063704 (2013).
    29. C. X. Wang, T. J. Yao, J. Wu, C. Ma, Z. X. Fan, Z. Y. Wang, Y. R. Cheng, Q. Lin, and B. Yang: Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interfaces, 1, 2613 (2009).
    30. Y. W. Shang, Y. Si, A. Raza, L. P. Yang, X. Mao, B. Ding, and J. Y. Yu: An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale, 4, 7847 (2012).
    31. X. M. Tang, Y. Si, J. L. Ge, B. Ding, L. F. Liu, G. Zheng, W. J. Luo, and J. Y. Yu: In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale, 5, 11657 (2013).
    32. M. L. Huang, Y. Si, X. M. Tang, Z. G. Zhu, B. Ding, L. F. Liu, G. Zheng, W. J. Luo, and J. Y. Yu: Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A, 1, 14071 (2013).
    33. W. B. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang: Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater., 25, 2071 (2013).
    34. S. H. Wang, M. Li, and Q. H. Lu: Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interfaces, 2, 677 (2010).
    35. C. Du, J. D. Wang, Z. F. Chen, and D. R. Chen: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci., 313, 304 (2014).
    36. A. Asthana, T. Maitra, R. Buchel, M.K. Tiwari, and D. Poulikakos: Multifunctional superhydrophobic polymer/carbon nanocomposites: ACS Appl. Mater. Interfaces, 6, 8859 (2014).
    37. J. P. Zhang and S. Seeger: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater., 21, 4699 (2011).
    38. J. Li, L. Shi, Y. Chen, Y. B. Zhang, Z. G. Guo, B. L. Su, and W. M. Liu: Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J. Mater. Chem., 22, 9774 (2012).
    39. M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang: Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater., 21, 665 (2009).
    40. Z. X. Xue, S. T. Wang, L. Lin, L. Chen, M. J. Liu, L. Feng, and L. Jiang: A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater., 23, 4270 (2011).
    41. C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, and L. Jiang: Underwater selfcleaning PEDOT-PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures. Adv. Mater. Interfaces, 1, 1400099 (2014).
    42. S. Y. Zhang, F. Lu, L. Tao, N. Liu, C. R. Gao, L. Feng, and Y. Wei: Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad ph range and hyper-saline environments. ACS Appl. Mater. Interfaces, 5, 11971 (2013).
    43. F. Lu, Y. N. Chen, N. Liu, Y. Z. Cao, L. X. Xu, Y. Wei, and L. Feng: A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil– water separation. RSC Adv., 4, 32544 (2014).
    44. B. X. Jing, H. T. Wang, K. Y. Lin, P. J. McGinn, C. Z. Na, and Y. X. Zhu: A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. Polymer, 54, 5771 (2013).
    45. Y. Dong, J. Li, L. Shi, X. B. Wang, Z. G. Guo, and W. M. Liu: Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem. Commun., 50, 5586 (2014).
    46. Q. Wen, J. C. Di, L. Jiang, J. H. Yu, and R. R. Xu: Zeolite-coated mesh film for efficient oil–water separation. Chem. Sci., 4, 591 (2013).
    47. N. Liu, Y. N. Chen, F. Lu, Y. Z. Cao, Z. X. Xue, K. Li, L. Feng, and Y. Wei: Straightforward oxidation of a copper substrate produces an underwater superoleophobic mesh for oil/water separation. Chemphyschem, 14, 3489 (2013).
    48. Y. Z. Zhu, F. Zhang, D. Wang, X. F. Pei, W. B. Zhang, and J. Jin: A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A, 1, 5758 (2013).
    49. H. C. Yang, K. J. Liao, H. Huang, Q. Y. Wu, L. S. Wan, and Z. K. Xu: Musselinspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. J. Mater. Chem. A, 2, 10225 (2014).
    50. H. C. Yang, J. K. Pi, K. J. Liao, H. Huang, Q. Y. Wu, X. J. Huang, and Z. K. Xu: Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces, 6, 12566 (2014).
    51. F. E. Ahmed, B. S. Lalia, N. Hilal, and R. Hashaikeh: Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation. Desalination, 344, 48 (2014).
    52. A. Raza, B. Ding, G. Zainab, M. El-Newehy, S. S. Al-Deyab, and J. Y. Yu: In situ cross-linked superwetting nanofibrous membranes for ultrafast oil– water separation. J. Mater. Chem. A, 2, 10137 (2014).
    53. Q. S. Liu, A. A. Patel, and L. Y. Liu: Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil–water separation. ACS Appl. Mater. Interfaces, 6, 8996 (2014).
    54. Y. N. Chen, Z. X. Xue, N. Liu, F. Lu, Y. Z. Cao, Z. X. Sun, and L. Feng: Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions. RSC Adv., 4, 11447 (2014).
    55. L. B. Zhang, Y. J. Zhong, D. Cha, and P. Wang: A self-cleaning underwater superoleophobic mesh for oil–water separation. Sci. Rep., 3, 2326 (2013).
    56. J. Yang, Z. Z. Zhang, X. H. Xu, X. T. Zhu, X. H. Men, and X. Y. Zhou: Superhydrophilic-superoleophobic coatings. J. Mater. Chem., 22, 2834 (2012).
    57. J. Yang, H. J. Song, X. H. Yan, H. Tang, and C. S. Li: Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose, 21, 1851 (2014).
    58. X. Y. Zhu, H. E. Loo, and R. B. Bai: A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci., 436, 47 (2013).
    59. X. Y. Zhu, W. T. Tu, K. H. Wee, and R. B. Bai: Effective and low fouling oil/ water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci., 466, 36 (2014).
    60. W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu, and L. Feng: Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/Water Mixture to Emulsion Separation. Adv. Mater. Interfaces, 1700029 (2017).
    61. W. Barthlott, and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1 (1997).
    62. C. Neinhuis, and W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667 (1997).
    63. J. Zimmermann, S. Seeger, and F. A. Reifler: Water shedding angle: a new technique to evaluate the water repellent properties of superhydrophobic surfaces. Textile Research Journal, 79, 1565 (2009).
    64. Z. Chu, and S. Seeger: Superamphiphobic surfaces. Chemical Society Reviews, 43, 2784 (2014).
    65. S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai: A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5, 31 (2017).
    66. R. N. Wenzel: Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28, 988 (1936).
    67. A. Cassie, and S. Baxter: Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546 (1944).
    68. X. Feng, and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18, 3063 (2006).
    69. E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko: Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98 (2013).
    70. X. Liu, Y. Liang, F. Zhou, and W. Liu: Extreme wettability and tunable adhesion: biomimicking beyond nature. Soft Matter, 8, 2070 (2012).
    71. J. Bico, U. Thiele, and D. Quéré: Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 41 (2002).
    72. A. Tuteja, W. Choi, and M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen: Designing superoleophobic surfaces. Science, 318, 1618 (2007)
    73. H. Sun, Y. Xu, Y. Zhou, W. Gao, H. Zhao, and W. Wang: Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly(vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticlesJ. Appl. Polym. Sci., 134 (2017).
    74. C. H. Xue, Y. R. Li., J. L. Hou, L. Zhang, J. Z. Ma and S. T. Jia: Self-roughened superhydrophobic coatings for continuous oil–water separation. J. Mater. Chem. A, 3, 10248 (2015).
    75. S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guan, and J. Zhang: Durable superhydrophobic cotton fabric for oil/water separation Colloids. Sur. A, 533, 249 (2017).
    76. C. J. Chen, W. H. Li, W. Y. Chen and Y. M. Yang: Fabrication of Multifunctional Polyester Fabrics by Using Fluorinated Polymer Coatings. Fibers and Polymers, accepted, 20 May 2019.
    77. S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, and Y. Lai: Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chem. Eng. J., 333, 621 (2018).
    78. C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab and Y. Lai: Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A, 4, 12179 (2016).

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE