簡易檢索 / 詳目顯示

研究生: 張弘穎
Chang, Hung-Ying
論文名稱: 窄頻物聯網的低複雜度細胞偵測演算法開發
Low-Complexity Cell Identity Detection Algorithms by Sequences Grouping for NB-IoT
指導教授: 陳昭羽
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 窄頻物聯網正交頻域多工同步訊號細胞偵測
外文關鍵詞: NB-IoT, OFDM, LTE system, synchronization, cell search
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窄頻物聯網是由第三代合作夥伴計劃所制定,並用於大規模連接的新蜂窩技術,在增強式覆蓋區域中支持大量使用者裝置的技術。窄頻物聯網與現有的行動網路具有共通性,下行通道傳輸採用正交頻域多工技術,而子載波間隔與長期演進系統相同。此外,窄頻物聯網僅分配180KHz的頻寬與長期演進系統中的一個物理資源塊的大小相同。當基地台和使用者裝置連接時,細胞搜尋是第一個程序。通常細胞搜尋過程包括同步和細胞身分辨識。本文根據同步序列的性質,提出了新的低複雜度細胞偵測演算法,主要是利用同步序列的性質來減少互相關值計算的數量,將2016個同步序列分為1008個群組,並在接收訊號和代表序列之間挑選最大的互相關值的群組。再接著從群組中挑選互相關值最大的序列,以獲得所需的細胞身分代碼和訊框位置。在此論文中,我們根據同步訊號組成序列的特性,提出了多個不同的分群方法,並分析相關值特性與運算複雜度。模擬結果顯示,本文所提出的第三個分群演算法因為充分利用同步序列的結構性,大大降低73%的計算複雜度。具有低複雜度的細胞搜尋演算法完全符合窄頻物聯網低成本裝置的需求。

    Narrowband internet of things (NB-IoT) is a new cellular technology which was proposed to support a massive number of user equipments (UEs) operated in an enhanced coverage area. NB-IoT downlink transmission employs orthogonal frequency division multiplexing (OFDM) technique with subcarrier spacing equal to that of long term evolution (LTE) system.

    Furthermore, NB-IoT only allocates 180KHz bandwidth which is the same as the size of one physical resource block (PRB) in LTE. When the enhanced NodeB (eNB) and the UE are connected, the initial carrier frequency offset (CFO) may occur because of the mismatch of oscillators between transmitter and receiver. As a result, the synchronization is a critical procedure.

    Generally, the cell search process includes synchronization and cell identification (ID). This thesis proposes a new low-complexity algorithm for cell search according to the property of the synchronization sequences. A two-stage grouping algorithm is presented to divide all the synchronization sequences into groups by utilizing the construction of synchronization sequences. The number of searching operations are hence reduced. Therefore, the computational complexity is decreased. In this thesis, the main contribution is to reduce the number of cross-correlation calculations by utilizing the property of the synchronization sequences. This thesis presents a new low-complexity algorithm of cell ID detection by dividing 2016 sequences into 1008 groups. We first select certain number of groups with large cross-correlations between the received signal and the group representative sequences. Then, the cross-correlations of the received signal and the constituent sequences in the selected groups are performed to obtain the desired cell ID and frame number.

    In this thesis, we propose two new grouping methods according to the sequence properties. The correlation property and the computational complexity are both analyzed. The simulation results show that the proposed grouping method III can achieve 73 percent reduction with acceptable performance loss.

    摘要v Extended Abstract vii 致謝xxxi Table of Contents xxxiii List of Figures xxxv List of Tables xli 1 介紹1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 論文貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 論文章節. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 正交頻域多工與窄頻物聯網系統3 2.1 正交頻域多工系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 多載波調變. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 分頻多工. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 正交分頻多工. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.4 正交分頻多工的循環前綴. . . . . . . . . . . . . . . . . . . . . . 5 2.2 窄頻物聯網系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 窄頻物聯網的佈署. . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 訊框與時槽. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 窄頻物聯網的下行鏈路同步訊號. . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Zadoff Chu序列. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 窄頻主同步訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 窄頻輔同步訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 同步與細胞搜尋的文獻回顧15 3.1 Legacy Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Differential detection method . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 本文提出的細胞偵測演算法19 4.1 NSSS結構分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 參考訊號分群的細胞偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 參考訊號的分群. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.2 分群代表序列的細胞偵測. . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 累計相關性作法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 效能模擬與評估41 5.1 單次接收訊號模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1.1 Guard-band deployment . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1.2 In-band deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.3 CFO and timing error . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 累計相關值模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 結論與未來發展121 Bibliography 123

    [1] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A primer on 3GPP narrowband internet of things,” IEEE Commun. Mag., vol. 55, no. 3, pp. 117–123, Mar. 2017.

    [2] A. Adhikary, X. Lin, and Y.-P. E.Wang, “Performance evaluation of NB-IoT coverage,” in Proc. IEEE Veh. Technol. Conf., Montreal, Canada, Mar. 2017, pp. 1–5.

    [3] 3GPP TS 36.211, “Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation,” V14.5.0 , Dec. 2017.

    [4] S.-L. Su, Y.-C. Lin, and Y.-J. Fan, “Joint sector identity and integer part of carrier frequency offset detection by phase-difference in long term evolution cell search process,” IET Commun., vol. 7, no. 10, pp. 950–959, Jul. 2013.

    [5] M. J. Shim, J. S. Han, H. J. Roh, and H. J. Choi, “A frequency synchronization method for 3GPP LTE OFDMA system in TDD mode,” in Proc. Int. symp. Commun. and Inform. Technol., Icheon, South Korea, Sep. 2009, pp. 864–868.

    [6] Y.-C. Lin, S.-L. Su, and Y.-J. Fan, “Joint sector ID and ICFO detection by using partial correlation scheme in LTE cell search process,” IEEE Pers. Commun., vol. 70, no. 4, pp. 1603–1621, Aug. 2013.

    [7] A. Ali, S. Member, W. Hamouda, and S. Member, “On the cell search and initial synchronization for NB-IoT LTE systems,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1843 1846, Aug. 2017.

    [8] A. Shimura, M. Sawahashi, and Y. Kishiyama, “Physical cell ID detection probabilities using frequency domain PVS transmit diversity for NB-IoT radio interface,” in Proc. European Wireless 2017, 23th European Wireless Conf., Dresden, Germany, May 2017, pp. 1–6.

    [9] J.-B. Chang, “Cell identity detection algorithm for NB-IoT,” M.S. thesis, Depart. of Eng. Sci., National Cheng Kung University, Tainan, Taiwan, Jun. 2018.

    [10] B. M. Popovic and F. Berggren, “Primary synchronization signal in E-UTRA,” in Proc. IEEE Int. Symp. on Spread Spectrum Tech. and Applicat, Bologna, Italy, Aug. 2008, pp. 426–430.

    [11] Y. Tsai, G. Zhang, D. Grieco, F. Ozluturk, and X. Wang, “Cell search in 3GPP long term evolution systems,” IEEE Veh. Technol. Mag., vol. 2, no. 2, pp. 23–29, Jun. 2007.

    [12] K. Manolakis, D. M. G. Estevez, V. Jungnickel, W. Xu, and C. Drewes, “A closed concept for synchronization and cell search in 3GPP LTE systems,” in Proc. IEEE Wireless Commun. and Netw. Conf., Icheon, South Korea, Apr. 2009, pp. 1–6.

    [13] C.-Y. Chu, I.-W. Lai, Y.-Y. Lan, and T.-D. Chiueh, “Efficient sequential integer CFO and sector identity detection for LTE cell search,” IEEE Commun. Lett., vol. 3, no. 4, pp. 389–392, 2014.

    [14] H. Wang, Z. Deng, X. Gao, and X. You, “Optimization and efficient detection of primary synchronization signal for multi-beam satellite-LTE systems,” Int. J. Satell. Commun. Netw., vol. 34, no. 2, pp. 115–129, Mar. 2016.

    [15] M. Sandell, J. J. van de Beek, and per Ola Borjesson, “Timing and frequency synchronization in OFDM systems using the cyclic prefix,” in Proc. IEEE Int. Symp. Synchronization, Apr. 1995, pp. 16–19.

    [16] T. Yingming and Z. Guodong, “Time and frequency synchronization for 3GPP long
    term evolution systems,” in Proc. IEEE Veh. Technol. Conf., Dublin, Ireland, Apr. 2007,
    pp. 1727–1731.
    [17] S. N. Nazar and A. Haghighat, “Optimized primary synchronization sequences for dedicated MBMS in LTE E UTRAN,” Inter Digital Commun., pp. 1–4, Jan. 2008.

    [18] F. Schuh, “LTE:der mobilfunk der zukunft synchronization and cell search,” Ausgewahlte Kapitel der Nachrichtentechnik, WS 2009/2010, Feb. 2010.

    [19] D.-B. Lin, J.-C. Hsieh, and H.-P. Lin, “Improved joint correlated detection in cell search and synchronization procedure in 3GPP LTE downlink system,” in Proc. Int. Conf. Anti-Counterfeiting, Security and Identification, Taipei, Taiwan, Oct. 2012, pp. 1–5.

    [20] Huawei Inc., “On cell search and system acquisition time improvements,” 3GPP TSG RAN WG1 Meeting #89, Tech. Rep. R1-1707027, May 2017.

    [21] R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inf. Theory, vol. IT-8, no. 6, pp. 381–382, Oct. 1962.

    [22] D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. IT-18, no. 4, pp. 531–532, Jul. 1972.

    [23] D. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequence,” IEEE Trans. Inf. Theory, vol. IT-25, no. 6, pp. 720–724, Nov. 1979.

    [24] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Inf. Theory, vol. 38, no. 4, pp. 1406–1409, Jul. 1992.

    [25] S. Beyme and C. Leung, “Efficient computation of DFT of Zadoff-Chu sequences,” Electron. Lett., vol. 45, no. 9, pp. 461–462, Apr. 2009.

    [26] P.-Y. Tsai and H.-W. Chang, “A new cell search scheme in 3GPP long term evolution downlink OFDMA systems,” in Proc. Int. Conf. Wireless Commun. & Signal Process., Nanjing, China, 2009, pp. 1–5.

    [27] 3GPP TS 36.104, “Base station (BS) radio transmission and reception,” V8.4.0 , Dec. 2008.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE