簡易檢索 / 詳目顯示

研究生: 郭俊志
Kuo, Chun-Chih
論文名稱: 二氧化碳封存環境下對封固材料基本性質影響之研究
A study of the basic properties of the cementing materials in CO2 storage environment
指導教授: 王建力
Wang, Chein-Lee
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 128
中文關鍵詞: 二氧化碳地質封存超臨界二氧化碳封固材料
外文關鍵詞: CCS, supercritical, sealing material
相關次數: 點閱:95下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在二氧化碳地質封存技術(CCS)部分,二氧化碳可以以超臨界流體狀態被注入深部地質構造與地底下的鹽水結合形成碳酸。造成注入井位材料退化或地質缺陷,其中在封固材料部份,二氧化碳可能的洩漏途徑包括套管與固井水泥(岩層與固井水泥)介面、套管與固井水泥裂縫或固井水泥(套管、岩層)退化等。
    因此本研究設計一套超臨界二氧化碳反應器,提供二氧化碳封存對封固材料影響之相關研究,透過試驗室規模模擬台灣現地先導場址實際封存二氧化碳情況對其封固材料(固井水泥、頁岩)的影響,提出相關數據及分析結果,研究結果分述如下:
    (1) 本研究依據前人研究之二氧化碳試驗反應範圍及參考台灣先導場址井下環境之參數值,設計一套超臨界二氧化碳反應器。
    (2) 觀察出API G級固井水泥在超臨界二氧化碳+水層環境反應完之損傷度較在超臨界二氧化碳層反應後之損傷度大。
    (3) 利用超臨界二氧化碳反應器進行錦水頁岩模擬封存反應。結果觀察反應後有微小碳酸鈣沉澱礦物結晶產生。而岩樣試體滲透率及孔徑分佈,有隨反應時間增小的趨勢,有助於初期二氧化碳封存蓋層封固性。
    (4) 利用超臨界二氧化碳反應器進行關刀山砂岩模擬封存反應。結果觀察到反應過後岩樣試體滲透率及孔徑分佈,有隨反應時間增大的趨勢,有助於初期超臨界二氧化碳於儲存層流通性。
    (5) 自行設計複合樣本模擬試驗,探討複合樣本介面受二氧化碳封存之反應機制。
    (6) 取得國外商用抗二氧化碳水泥並自行設計改質抗二氧化碳水泥,並完成水泥受二氧化碳侵蝕相關物理化學機制之探討。

    In view of the technology for geological storage of carbon dioxide (CCS), carbon dioxide in its supercritical fluid state can be injected into the depth of the geological structure, which combines with underground brine to form carbonic acid, causing injected well material degradation or geological defects. As for the sealing material, routes that possibly lead to carbon dioxide leakage include: casing and oil well cement cap rock/oil well cement interface, casing, and oil well cement cracks or oil well cement casing and cap rock degradation, etc.
    Therefore, a set of supercritical carbon dioxide reactor systems was designed in this study for research related to the impact of carbon dioxide storage on sealing materials. The impact of the current situation of actual carbon dioxide storage at the existing pilot plant in Taiwan on oil well sealing cement and cap rocks was simulated on a laboratory scale in order to propose relevant data and analysis results.
    Hence, this study attempted to simulate on a laboratory scale the impact of the current situation of actual carbon dioxide storage at the existing pilot plant in Taiwan on oil well sealing cement and cap rocks to propose relevant data and analysis results.
    (1) Based on the carbon dioxide test reaction ranges adopted by predecessors and in reference to the parameters for the well environment in Taiwan’ pilot plant, a set of supercritical carbon dioxide reactors was designed.
    (2) According to observations, the degree of injury sustained by API G Grade oil well cement after the reaction with supercritical carbon dioxide + ground water environment was completed was greater than the degree of injury sustained after the supercritical carbon dioxide layer reaction was completed.
    (3) Through the supercritical carbon dioxide reactor, cap rock storage reaction simulation was carried out. Based on the observation results, a small amount of calcium carbonate mineral crystalline was produced. As for rock sample permeability and pore size distribution, the trend of “a decrease with reaction time” was seen, which was conducive to the sealing of carbon dioxide storage rock cap during the early phase.
    (4) The supercritical carbon dioxide reactor was used to simulate the storage reaction in the storage layer. Observation results show that after the reaction, the rock sample’s permeability and pore size distribution showed the trend of “an increase with reaction time”, which was conductive to the circulation of the supercritical carbon dioxide in the storage layer during the early phase.
    (5) The compound sample simulation test was self-designed to explore the compound sample interface’s reaction mechanism for the carbon dioxide in storage.
    (6) Carbon dioxide cement for commercial use was acquired from abroad. It was self-designed and modified into carbon dioxide-resistant cement. In addition, a discussion on the physical and chemical mechanism related to the cement under carbon dioxide erosion was completed.

    摘 要 I EXTEND ABSTRACT II 誌 謝 IX 目 錄 X 表目錄 XIV 圖目錄 XV 一、緒論 1 1-1研究動機與目的 1 1-2計畫研究流程與內容 4 二、文獻回顧 7 2-1二氧化碳地質封存技術 7 2-1-1二氧化碳超臨界狀態 7 2-1-2二氧化碳地下封存技術 8 2-1-3二氧化碳地質封存的儲層類型 9 2-1-4二氧化碳增採油氣技術 11 2-1-4-1 EOR(Enhanced Oil Recovery) 11 2-1-4-2 CSEGR(Carbon Sequestration Enhanced Gas Recovery) 12 2-1-4-3 ECBM(Enhanced Coal Bed Methane) 13 2-1-4-4 ENGH(Enhanced Natural Gas Hydrats) 14 2-2各國二氧化碳地質封存實例 16 2-2-1加拿大Weyburn油田 16 2-2-2挪威Sleipner氣田 17 2-2-3美國德克薩斯州SACROC單元 19 2-2-4克羅埃西亞Ivanic油田 19 2-2-5奧地利維也納Hochleiten油田 20 2-2-6法國SECURE項目 21 2-2-7日本Nagaoka項目 22 2-2-8荷蘭GDF項目 22 2-3國際相關試驗設備及試驗現況 23 2-3-1水泥材料 23 2-3-2岩石材料 39 2-3-3複合材料 43 2-4二氧化碳地質封存問題及風險 50 2-4-1二氧化碳注入過程中問題 50 2-4-2二氧化碳地質封存風險 51 2-4-3二氧化碳洩漏環境影響 52 三、試驗設備及試驗方法暨材料 54 3-1超臨界二氧化碳反應器 54 3-1-1超臨界流體 54 3-1-2超臨界二氧化碳反應器 56 3-1-3超臨界二氧化碳試驗操作步驟 57 3-1-4其它規畫試驗 59 3-1-4-1單軸壓縮試驗 59 3-1-4-2超聲波檢測 60 3-1-4-3孔隙分佈及氣體滲透率分析 61 3-1-4-4 X光粉末繞射分析(XRD) 61 3-1-4-5微結構與組成成份分析(SEM、EDS) 62 3-2試驗材料 63 3-2-1固井水泥 63 3-2-2岩石材料 66 3-2-3複合材料 68 3-3試驗規劃 68 3-3-1固井水泥反應試驗 68 3-3-2岩石反應試驗 69 3-3-3複合樣本試驗 70 四、試驗結果與討論 72 4-1固井水泥試驗 72 4-1-1試驗結果(Dynamic Poisson’s ratio and Dynamic Young’s modulus) 72 4-1-2試驗結果(單軸壓縮強度、碳化深度) 74 4-1-3試驗結果(SEM、XRD、EDS) 76 4-2岩石反應試驗 80 4-2-1錦水頁岩試驗結果(SEM、XRD、EDS) 80 4-2-2錦水頁岩試驗結果(孔隙度、滲透率) 83 4-2-3關刀山砂岩試驗結果(SEM、XRD、EDS) 85 4-2-4關刀山砂岩試驗結果(孔隙度、滲透率) 89 4-3複合材料試驗 91 4-3-1試驗結果(SEM、XRD) 91 4-3-2試驗結果(孔隙度、滲透率) 94 4-4改質水泥試驗 96 4-4-1試驗原理 96 4-4-1-1商業抗二氧化碳油井水泥 96 4-4-1-2抗二氧化碳腐蝕固井材料的研究路線 96 4-4-2試驗材料 98 4-4-3試驗方法與結果 98 4-4-3-1單軸壓縮強度 98 4-4-3-2 Dynamic Poisson’s ratio and Dynamic Young’s modulus 99 4-4-3-3碳化深度 100 4-4-3-4孔隙分佈及氣體滲透率 101 4-4-3-5化學分析 103 4-5小結 107 五、結論與建議 109 5-1結論 109 5-2建議 111 六、參考文獻 113 自 述 121

    [1] IPCC, 2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [2] Mann, M. E.; Bradley, R. S.; Hughes, M. K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries, Nature 392, 779–787.
    [3] IEA, 2014, Energy Technology Perspectives 2014 - Harnessing Electricity's Potential, OECD/IEA, Paris, France.
    [4] Martin, I., 2010. Evaluating the impact of fractures on the performance of the In Salah CO2 storage site, International Journal of Greenhouse Gas Control 4, 242-248.
    [5] Gislason, S. R., 2010. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project, International Journal of Greenhouse Gas Control 4, 537-545.
    [6] Celia, M. A., Bachu, S., Nordbotten, J. M., Gasda, S.E., Dahle, H.K., 2005. Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs, Presented at 7th International Conference on Greenhouse Gas Control Technologies 1, 663-671.
    [7] IPCC, 2005. Carbon Dioxide Capture and Storage Cambridge University Press, UK.
    [8] IEA, 2015. Storing CO2 through Enhanced Oil Recovery, OECD/IEA, Paris, France.
    [9] Oldenburg, C.M., Stevens S.H., Benson, S.M., 2004. Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR), Energy 29, 1413-1422.
    [10] Bergena, F. V., Galeb, J., Damenc, K.J., Wildenborga, A.F.B., 2004. Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production, Energy 29, 1611-1621.
    [11] Nakano, S., Yamamoto, K., Ohgaki, K., 1998. Natural Gas Exploitation by Carbon Dioxide from Gas Hydrate Fields - High-Pressure Phase Equilibrium for an Ethane Hydrate System, Instn, Mech Engrs. 212, 159-163.
    [12] Pendrigh, N.M., 2005. Geological and geophysical characterization of the Mississippian Midale reservoir, Weyburn Field, Saskatchewan; in Summary of Investigations 2005, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2005-4.1, CD-ROM, Paper A-14.
    [13] Carey, J.W., Wigand, M., Chipera, S., Wolde, G. G., Pawar, R., Lichtner, P., Wehner, S., Raines, M., Guthrie, G.D., 2007. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, International Journal of Greenhouse Gas Control 1, 75-85.
    [14] Potsch, K., 2004. GasInjection Pilot in the Hochleiten Field, SPE/DOE Symposium on Improved Oil Recovery, SPE 89356.
    [15] Bruckdorfer, R. A., 1986. Carbon Dioxide Corrosion in Oilwell Cement, SPE 15176.
    [16] Shen, J.C. Pye, D.S., 1989. Effects of CO2 attack on cement in high-temperature applications, SPE/IADC Drilling Conference, February 28 – March 3, New Orleans, Louisiana, SPE/IADC-18618.
    [17] Venhuis, M. A., Reardon, E. J., 2003. Carbonation of cementitious wasteforms under supercritical and high pressure subcritical conditions, Environmental Technology 24(7), 877-887.
    [18] Barlet-Gouédard, V., Rimmelé, G., Goffe, B., Porcherie, O., 2006. Mitigation strategies for the risk of CO2 migration through wellbores, SPE 98924.
    [19] Kutchko, B.G., Strazisar, B.R., Dzombak, D.A., Lowry, G.V., Thaulow, N., 2007. Degradation of well cement by CO2 under geologic sequestration conditions, Environmental Science and Technology 41 (13), 4787-4792.
    [20] Barlet-Gouédard, V., Rimmelé, G., Goffe, B., Porcherie, O., 2007. Well Technologies for CO2 Geological Storage: CO2-Resistant Cement, Oil and Gas Science and Technology 62(3), 325-334.
    [21] Rimmelé, G., Barlet-Gouedard, V., Porcherie, O., Goffe, B., Brunet, F., 2008. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids, Cement and Concrete Research 38, 1038-1048.
    [22] Fabbri, A., Corvisier, J., Schubnel, A., Brunet, F., Goffé, B., Rimmele, G., Barlet-Gouédard, V., 2009. Effect of carbonation on the hydro-mechanical properties of Portland cements, Cement and Concrete Research 39(12), 1156-1163.
    [23] Wigand, M., Kaszuba, J. P., William, C., Hollis, K., 2009. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface, Chemical Geology 265, 122-133.
    [24] Barlet-Gouédard, V., Rimmelé G., Porcherie, O., Quisel, N., Desroches, J., 2009. A solution against well cement degradation under CO2 geological storage environment, International Journal of Greenhouse Gas Control 3, 206-216.
    [25] Liteanu, E., Spiers, C.J., Peach, C.J., 2009. Failure behaviour wellbore cement in the presence of water and supercritical CO2, Energy Procedia 1, 3553-3560.
    [26] Yuanhua, L., Dajiang, Z., Dezhi, Z., Yuanguang, Y., Taihe, S., Kuanhai, D., Chengqiang, R., Deping, Z., Feng, W., 2013. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions, Corrosion Science 74, 13-21.
    [27] Viswanathan, H.S., Pawar, R.J., Stauffer, P.H., Kaszuba, J.P., Carey, J.W., Olsen, S.C., Keating, G.N., Kavetski, D., Guthrie, G.D., 2008. Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site, Environmental Science and Technology 42, 7280-7286.
    [28] Duguid, A., Radonjic, M., Scherer, G.W., 2005. Degradation of well cements exposed to carbonated Brine, Fourth Annual Conference on Carbon Capture and Sequestration Doe/Netl.
    [29] Wigand, M., Kaszuba, J. P., Carey, J., W., Hollis, W. K., 2009. Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface, Chemical Geology 265, 122-133.
    [30] Bertier, P., Lagrou, D., 2002. Petrographical, geochemical and petrophysical characterisation of potential reservoirs and cap rocks for the sequestration of CO2 in the Campine Basin (NE-Belgium), Proceedings of the 5th European Coal Conference, September 15-17.
    [31] Duguid, A., Scherer, G.W., 2010. Degradation of oilwell cement due to exposure to carbonated brine, International Journal of Greenhouse Gas Control 4, 546-560.
    [32] Binyam, L. A., Aagaard, P., Munz, I. A., Skurtveit, E., 2011. Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine, Applied Geochemistry 26, 1975-1989.
    [33] Stuart, D. C., Wyatt, L., Harris, E. M., Susan, A. C., 2013. Permeability of Wellbore-Cement Fractures Following Degradation by Carbonated Brine, Rock Mech Rock Eng 46, 455–464.
    [34] Barlet-Gouédard, V., Rimmelé, G., Goffe, B., Porcherie, O., 2007. Well Technologies for CO2 Geological Storage: CO2-Resistant Cement, Oil and Gas Science and Technology 62(3), 325-334.
    [35] Kuuskraa, V. A., 2006. Cost-Effective Remediation Strategies for Storing CO2 in Geologic Formations, SPE 126618.
    [36] Mueller, D. T., GoBoncan, V., Dillenbeck, R. L., Heinold T., 2004. Characterizing Casing-Cement-Formation Interactions Under Stress Conditions: Impact on Long-Term Zonal Isolation, SPE 90450.
    [37] Yasuhiko, A., Takeshi, F., 1993. Characteristics of supercritical fluids, The Review of High Pressure Science and Technology 2(4), 262-264.
    [38] 科學人雜誌, 2014. 第145期, 3月號.
    [39] 李冠穎,2011,「二氧化碳環境下對油井水泥物理性質及化學性質之影響」,國立成功大學資源工程研究所碩士論文。
    [40] 江健豪,2012,「超臨界二氧化碳環境下對套管水泥力學與物化性質之影響」,國立成功大學資源工程研究所碩士論文。
    [41] 陳思螢,2012,「超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究」,國立成功大學資源工程研究所碩士論文。
    [42] 張育源,2014,「超臨界二氧化碳環境不同溫度下 API G級水泥力學性質之研究」,國立成功大學資源工程研究所專題論文。
    [43] 陳宏銓,2014,「超臨界二氧化碳環境下對添加矽酸化合物套管水泥性質之研究」,國立成功大學資源工程研究所碩士論文。

    下載圖示 校內:2019-02-16公開
    校外:2019-02-16公開
    QR CODE