簡易檢索 / 詳目顯示

研究生: 張獻元
Chang, Hsien-Yuan
論文名稱: 阿黴素引起的淋巴瘤患者心臟毒性:從臨床到實驗室
Doxorubicin-induced cardiotoxicity in patients with lymphoma: from clinic to bench
指導教授: 劉秉彥
Liu , Ping-Yen
劉嚴文
Liu, Yen-Wen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 126
中文關鍵詞: 心毒性阿黴素淋巴癌恩格列淨癌症治療相關的心臟功能障礙
外文關鍵詞: Cardiotoxicity, Doxorubicin, Lymphoma, Empagliflozin, CTRCD
相關次數: 點閱:33下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著對心臟腫瘤學愈來愈被重視,如何早期診斷和治療癌症治療相關心臟功能障礙變得相當重要。Empagliflozin是種鈉-葡萄糖協同轉運蛋白2抑制劑,且在臨床上對心衰竭有顯著的功效,但鈉-葡萄糖協同轉運蛋白2主要並非表現在心臟細胞,所以empagliflozin對心臟的機轉以及是否對癌症治療心毒性有效仍未知。
    我們首先使用斑點追蹤心臟超音波來成功偵測癌症治療所導致之心毒性,發現即使在安全劑量的doxorubicin使用下依然有近一半的病人有心臟功能下降,並證實這群病人有較差之運動肺功能以及臨床預後。接著,我們使用iPSC-CM作為平台證實empagliflozin可以直接作用於心臟細胞,且可以減少doxorubicin對心臟細胞所造成的細胞凋亡。而在相關路徑的實驗中發現doxorubicin造成JNK/STAT3軸的磷酸化,且empagliflozin可以經由抑制JNK減少doxorubicin所造成之細胞凋亡,顯示JNK在此心毒性上的重要角色。接著我們發現活性氧物質以及NAD+是造成此心毒性的JNK下游路徑。最後,我們使用動物研究再次證實empagliflozin可減輕doxorubicin誘導的心臟功能障礙,且由於抑制JNK有同樣的效果,表示empagliflozin對心臟的幫助並非只是經由利尿而是經由JNK的抑制。另外,由於臨床僅使用安全劑量而非高劑量之doxorubicin,因此我們探討安全劑量藥物下的加成心毒性,發現vincristine會加強doxorubicin之心毒性,且機轉可能是經由加強JNK之磷酸化,而empagliflozin對此加成心毒性依然有保護效果,再次展現了empagliflozin在doxorubicin導致之心毒性的重要保護腳色,我們的研究結果值得擴展到後續的臨床隨機試驗以驗證empagliflozin在臨床使用的角色。

    As the field of cardiac oncology gains importance, early diagnosis and management of cancer treatment-related cardiac dysfunction (CTRCD) have become crucial. Empagliflozin, a sodium-glucose cotransporter 2 inhibitor, has shown significant efficacy in heart failure management. However, its mechanisms of action in cardiomyocyte and potential effectiveness against doxorubicin-induced CTRCD remain unclear.
    Our study employed speckle tracking echocardiography to detect cardiotoxicity from cancer treatment, revealing that nearly half of the patients experienced cardiac function decline even at safe doses of doxorubicin. These patients also exhibited poorer exercise capacity and clinical outcomes. Then, using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), we confirmed that empagliflozin directly impacts cardiomyocyte and reduces doxorubicin-induced apoptosis. Mechanistically, doxorubicin was found to activate the JNK/STAT3 pathway, while empagliflozin inhibited JNK, thus mitigating cell apoptosis and highlighting JNK’s critical role in this cardiotoxicity. Our findings identified reactive oxygen species and NAD+ as downstream pathways associated with JNK in this context. In animal studies, empagliflozin was further shown to alleviate doxorubicin-induced cardiac dysfunction, with JNK inhibition suggesting that its protective effects extend beyond diuresis. Furthermore, we explored the additive cardiotoxicity of low-dose doxorubicin combined with vincristine, which appeared to exacerbate cardiac toxicity via enhanced JNK phosphorylation. Notably, empagliflozin maintained its protective effects against this combined cardiotoxicity without compromising the efficacy of lymphoma treatment. Our findings warrant further clinical trials to validate the application of empagliflozin in managing CTRCD, given the critical need for strategies that protect cardiac function in cancer survivors.

    中文摘要 i Abstract ii Acknowledgement iii Table of contents iv List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1 Cancer therapy-related cardiac dysfunction 1 1.1.1 Speckle-tracking echocardiography 1 1.1.2 Cardiopulmonary exercise test 2 1.1.3 Study design of clinical study 2 1.2 Chemotherapy regimens for lymphoma 2 1.2.1 Doxorubicin-induced cardiotoxicity 3 1.2.2 Vincristine-induced cardiotoxicity 4 1.3 Treatment of CTRCD 4 1.3.1 Empagliflozin 5 1.4 Human stem cell-derived cardiomyocytes 6 1.5 Study design of in vitro and in vivo studies 6 Chapter 2. Materials and methods 8 2.1 Clinical study 8 2.1.1 Study population 8 2.1.2 Outcome 8 2.1.3 Echocardiography 9 2.1.4 Myocardial deformation (strain) analysis 10 2.1.5 Cardiopulmonary exercise test 10 2.1.6 Statistical analysis 11 2.2 in vitro and in vivo studies 11 2.2.1 Reagents 11 2.2.2 Cell culture 12 2.2.3 Immunocytochemical Staining 12 2.2.4 Annexin V staining 13 2.2.5 Cell viability 13 2.2.6 Western blot analysis 14 2.2.7 TUNEL assay 14 2.2.8 Measurement of intracellular ROS 14 2.2.9 NAD+/NADH assay 15 2.2.10 JC-1 assay 15 2.2.11 Detection of mitochondrial respiration and energy metabolism 16 2.2.12 Animal model 16 2.2.13 Transthoracic echocardiography 17 2.2.14 Pressure–volume (PV) loop analysis 17 2.2.15 Assessment of cardiac fibrosis 17 2.2.16 Statistical analysis 18 Chapter 3. Results 19 3.1 Clinical study 19 3.1.1 Study population 19 3.1.2 Change of cardiac function 19 3.1.3 CPET results 20 3.1.4 Outcomes 20 3.1.5 Inter- and intra-rater variability 21 3.2 in vitro and in vivo studies 21 3.2.1 Pretreatment with empagliflozin attenuates doxorubicin-induced apoptosis in hSC-CMs 21 3.2.2 Inhibition of JNK and STAT3 attenuates doxorubicin-induced apoptosis 22 3.2.3 Downstream pathways of empagliflozin in doxorubicin-induced apoptosis 23 3.2.4 Empagliflozin attenuates doxorubicin-induced cardiotoxicity in vivo 24 3.2.5 Vincristine induces autophagy and enhances doxorubicin-induced apoptosis 24 3.2.6 Vincristine enhances doxorubicin-induced phosphorylation of JNK 25 3.2.7 The role of NAD+ and microtubule dynamics in the synergistic cardiotoxicity of doxorubicin and vincristine 26 3.2.8 Empagliflozin reduces synergistic cardiotoxicity without affecting the efficacy of lymphoma treatment 27 Chapter 4. Discussion 28 4.1 CTRCD in lymphoma patients 28 4.1.1 GLS identify patients with CTRCD 28 4.1.2 CTRCD worsen outcomes 28 4.1.3 Factors associated with CTRCD 29 4.1.4 Change of CPET in patients with CTRCD 29 4.1.5 Potential further directions 30 4.1.6 Study limitation 31 4.2 Empagliflozin attenuates doxorubicin-induced cardiotoxicity 31 4.2.1 Empagliflozin can directly act on human cardiomyocytes 31 4.2.2 The role of JNK/STAT3 axis in the cardioprotective effects of empagliflozin 32 4.2.3 Downstream pathway of JNK phosphorylation 34 4.2.4 Empagliflozin protects CTRCD by inhibiting the JNK signaling pathway in vivo 34 4.2.5 Potential further applications 36 4.2.6. Study limitations 36 4.3 Vincristine augments doxorubicin-induced cardiotoxicity 36 4.3.1 Vincristine reduces cell viability and induces autophagy in human cardiomyocyte 37 4.3.2 Additive cardiotoxicity of low doses of doxorubicin and vincristine 37 4.3.3 Disruption of microtubule dynamic enhances cardiotoxicity of doxorubicin 38 4.3.4 Empagliflozin reduces cardiotoxicity without affecting the efficacy of lymphoma treatment 39 4.3.5 Potential further directions 40 4.3.6 Study limitation 41 Chapter 5. Conclusions 42 References 43 Tables 56 Figures 65

    Ahn, S., Kwon, A., Oh, Y., Rhee, S., & Song, W. K. (2023). Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells. Mol Cells, 46(6), 387-398. https://doi.org/10.14348/molcells.2023.2192
    Albouaini, K., Egred, M., Alahmar, A., & Wright, D. J. (2007). Cardiopulmonary exercise testing and its application. Postgraduate Medical Journal, 83(985), 675-682. https://doi.org/10.1136/hrt.2007.121558
    Anker, S. D., Butler, J., Filippatos, G., Ferreira, J. P., Bocchi, E., Böhm, M., Brunner-La Rocca, H. P., Choi, D. J., Chopra, V., Chuquiure-Valenzuela, E., Giannetti, N., Gomez-Mesa, J. E., Janssens, S., Januzzi, J. L., Gonzalez-Juanatey, J. R., Merkely, B., Nicholls, S. J., Perrone, S. V., Piña, I. L., Ponikowski, P., Senni, M., Sim, D., Spinar, J., Squire, I., Taddei, S., Tsutsui, H., Verma, S., Vinereanu, D., Zhang, J., Carson, P., Lam, C. S. P., Marx, N., Zeller, C., Sattar, N., Jamal, W., Schnaidt, S., Schnee, J. M., Brueckmann, M., Pocock, S. J., Zannad, F., & Packer, M. (2021). Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. https://doi.org/10.1056/NEJMoa2107038
    Arciniegas Calle, M. C., Sandhu, N. P., Xia, H., Cha, S. S., Pellikka, P. A., Ye, Z., Herrmann, J., & Villarraga, H. R. (2018). Two-dimensional speckle tracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline-trastuzumab chemotherapy in patients with breast cancer. BMC Cancer, 18(1), 1037. https://doi.org/10.1186/s12885-018-4935-z
    Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985), 60(6), 2020-2027. https://doi.org/10.1152/jappl.1986.60.6.2020
    Belen, E., Canbolat, I. P., Yigittürk, G., Cetinarslan, Ö., Akdeniz, C. S., Karaca, M., Sönmez, M., & Erbas, O. (2022). Cardio-protective effect of dapagliflozin against doxorubicin induced cardiomyopathy in rats. Eur Rev Med Pharmacol Sci, 26(12), 4403-4408. https://doi.org/10.26355/eurrev_202206_29079
    Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307-310. http://www.ncbi.nlm.nih.gov/pubmed/2868172
    Bloom, M. W., Hamo, C. E., Cardinale, D., Ky, B., Nohria, A., Baer, L., Skopicki, H., Lenihan, D. J., Gheorghiade, M., Lyon, A. R., & Butler, J. (2016). Cancer Therapy-Related Cardiac Dysfunction and Heart Failure: Part 1: Definitions, Pathophysiology, Risk Factors, and Imaging. Circ Heart Fail, 9(1), e002661. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002661
    Boronkai, A., Bellyei, S., Szigeti, A., Pozsgai, E., Bognar, Z., Sumegi, B., & Gallyas, F., Jr. (2009). Potentiation of paclitaxel-induced apoptosis by galectin-13 overexpression via activation of Ask-1-p38-MAP kinase and JNK/SAPK pathways and suppression of Akt and ERK1/2 activation in U-937 human macrophage cells. Eur J Cell Biol, 88(12), 753-763. https://doi.org/10.1016/j.ejcb.2009.07.005
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394-424. https://doi.org/10.3322/caac.21492
    Cattelan, A., Ceolotto, G., Bova, S., Albiero, M., Kuppusamy, M., De Martin, S., Semplicini, A., Fadini, G. P., de Kreutzenberg, S. V., & Avogaro, A. (2015). NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis. Vascul Pharmacol, 70, 35-44. https://doi.org/10.1016/j.vph.2015.02.004
    Chang, H. Y., Hsu, H. C., Fang, Y. H., Liu, P. Y., & Liu, Y. W. (2024). Empagliflozin attenuates doxorubicin-induced cardiotoxicity by inhibiting the JNK signaling pathway. Biomed Pharmacother, 176, 116759. https://doi.org/10.1016/j.biopha.2024.116759
    Chang, H. Y., Lee, C. H., Su, P. L., Li, S. S., Chen, M. Y., Chen, Y. P., Hsu, Y. T., Tsai, W. C., Liu, P. Y., Chen, T. Y., & Liu, Y. W. (2021). Subtle cardiac dysfunction in lymphoma patients receiving low to moderate dose chemotherapy. Sci Rep, 11(1), 7100. https://doi.org/10.1038/s41598-021-86652-x
    Chang, W. T., Lee, W. H., Lee, W. T., Chen, P. S., Su, Y. R., Liu, P. Y., Liu, Y. W., & Tsai, W. C. (2015). Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients. Intensive Care Med, 41(10), 1791-1799. https://doi.org/10.1007/s00134-015-3970-3
    Chang, W. T., Shih, J. Y., Lin, Y. W., Chen, Z. C., Kan, W. C., Lin, T. H., & Hong, C. S. (2022). Dapagliflozin protects against doxorubicin-induced cardiotoxicity by restoring STAT3. Arch Toxicol, 96(7), 2021-2032. https://doi.org/10.1007/s00204-022-03298-y
    Chatterjee, K., Zhang, J., Tao, R., Honbo, N., & Karliner, J. S. (2008). Vincristine attenuates doxorubicin cardiotoxicity. Biochem Biophys Res Commun, 373(4), 555-560. https://doi.org/10.1016/j.bbrc.2008.06.067
    Choudhury, D., Rong, N., Ikhapoh, I., Rajabian, N., Tseropoulos, G., Wu, Y., Mehrotra, P., Thiyagarajan, R., Shahini, A., Seldeen, K. L., Troen, B. R., Lei, P., & Andreadis, S. T. (2022). Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Rep, 41(9), 111744. https://doi.org/10.1016/j.celrep.2022.111744
    Clements, I. P., Davis, B. J., & Wiseman, G. A. (2002). Systolic and diastolic cardiac dysfunction early after the initiation of doxorubicin therapy: significance of gender and concurrent mediastinal radiation. Nucl Med Commun, 23(6), 521-527. https://doi.org/10.1097/00006231-200206000-00003
    Conde, C., & Cáceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci, 10(5), 319-332. https://doi.org/10.1038/nrn2631
    Curigliano, G., Cardinale, D., Dent, S., Criscitiello, C., Aseyev, O., Lenihan, D., & Cipolla, C. M. (2016). Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin, 66(4), 309-325. https://doi.org/10.3322/caac.21341
    Deobagkar-Lele, M., Victor, E. S., & Nandi, D. (2014). c-Jun NH2 -terminal kinase is a critical node in the death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Eur J Immunol, 44(1), 137-149. https://doi.org/10.1002/eji.201343506
    Downs, R. M., Hughes, M. A., Kinsey, S. T., Johnson, M. C., & Baumgarner, B. L. (2016). Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes. Biochem Biophys Res Commun, 480(1), 61-68. https://doi.org/10.1016/j.bbrc.2016.10.008
    Drosatos, K., Drosatos-Tampakaki, Z., Khan, R., Homma, S., Schulze, P. C., Zannis, V. I., & Goldberg, I. J. (2011). Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction. J Biol Chem, 286(42), 36331-36339. https://doi.org/10.1074/jbc.M111.272146
    Fang, Y. H., Wang, S. P. H., Liao, I. C., Tsai, K. J., Huang, P. H., Yang, P. J., Yen, C. J., Liu, P. Y., Shan, Y. S., & Liu, Y. W. (2023). HLA-E(high) /HLA-G(high) /HLA-II(low) Human iPSC-Derived Cardiomyocytes Exhibit Low Immunogenicity for Heart Regeneration. Adv Healthc Mater, e2301186. https://doi.org/10.1002/adhm.202301186
    Felker, G. M., Thompson, R. E., Hare, J. M., Hruban, R. H., Clemetson, D. E., Howard, D. L., Baughman, K. L., & Kasper, E. K. (2000). Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med, 342(15), 1077-1084. https://doi.org/10.1056/NEJM200004133421502
    Ge, C., Cheng, Y., Fan, Y., & He, Y. (2021). Vincristine attenuates cardiac fibrosis through the inhibition of NLRP3 inflammasome activation. Clin Sci (Lond), 135(11), 1409-1426. https://doi.org/10.1042/cs20210189
    Geisler, S., Doan, R. A., Cheng, G. C., Cetinkaya-Fisgin, A., Huang, S. X., Hoke, A., Milbrandt, J., & DiAntonio, A. (2019). Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight, 4(17). https://doi.org/10.1172/jci.insight.129920
    Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol, 57(7), 727-741. https://doi.org/10.1016/s0006-2952(98)00307-4
    Guazzi, M., Bandera, F., Ozemek, C., Systrom, D., & Arena, R. (2017). Cardiopulmonary Exercise Testing: What Is its Value? J Am Coll Cardiol, 70(13), 1618-1636. https://doi.org/10.1016/j.jacc.2017.08.012
    Guo, Z. L., Li, J. Z., Ma, Y. Y., Qian, D., Zhong, J. Y., Jin, M. M., Huang, P., Che, L. Y., Pan, B., Wang, Y., Sun, Z. X., & Liu, C. Z. (2018). Shikonin sensitizes A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and AKT pathways. BMC Cell Biol, 19(1), 29. https://doi.org/10.1186/s12860-018-0179-7
    Gupta, V., Kumar Singh, S., Agrawal, V., & Bali Singh, T. (2018). Role of ACE inhibitors in anthracycline-induced cardiotoxicity: A randomized, double-blind, placebo-controlled trial. Pediatr Blood Cancer, 65(11), e27308. https://doi.org/10.1002/pbc.27308
    Gupte, M., Umbarkar, P., & Lal, H. (2017). Mechanistic Insights of Empagliflozin-Mediated Cardiac Benefits: Nearing the Starting Line : Editorial to: "Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes" by N. Hammoudi et al. Cardiovasc Drugs Ther, 31(3), 229-232. https://doi.org/10.1007/s10557-017-6741-2
    Han, X., Zhou, Y., & Liu, W. (2017). Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol, 1(1), 31. https://doi.org/10.1038/s41698-017-0034-x
    Harhous, Z., Booz, G. W., Ovize, M., Bidaux, G., & Kurdi, M. (2019). An Update on the Multifaceted Roles of STAT3 in the Heart. Front Cardiovasc Med, 6, 150. https://doi.org/10.3389/fcvm.2019.00150
    Henrie, H., Bakhos-Douaihy, D., Cantaloube, I., Pilon, A., Talantikite, M., Stoppin-Mellet, V., Baillet, A., Poüs, C., & Benoit, B. (2020). Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule rescue. J Cell Biol, 219(7). https://doi.org/10.1083/jcb.201909093
    Hequet, O., Le, Q. H., Moullet, I., Pauli, E., Salles, G., Espinouse, D., Dumontet, C., Thieblemont, C., Arnaud, P., Antal, D., Bouafia, F., & Coiffier, B. (2004). Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol, 22(10), 1864-1871. https://doi.org/10.1200/JCO.2004.06.033
    Hsieh, P. L., Chu, P. M., Cheng, H. C., Huang, Y. T., Chou, W. C., Tsai, K. L., & Chan, S. H. (2022). Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int J Mol Sci, 23(17). https://doi.org/10.3390/ijms231710146
    Hsu, W. T., Huang, C. Y., Yen, C. Y. T., Cheng, A. L., & Hsieh, P. C. H. (2018). The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Theranostics, 8(12), 3176-3188. https://doi.org/10.7150/thno.23207
    Hu, J., Chu, Z., Han, J., Zhang, Q., Zhang, D., Dang, Y., Ren, J., Chan, H. C., Zhang, J., & Huang, Y. (2014). Phosphorylation-dependent mitochondrial translocation of MAP4 is an early step in hypoxia-induced apoptosis in cardiomyocytes. Cell Death Dis, 5(9), e1424. https://doi.org/10.1038/cddis.2014.369
    Hu, J., Wu, Q., Wang, Z., Hong, J., Chen, R., Li, B., Hu, Z., Hu, X., & Zhang, M. (2019). Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress. Biomed Pharmacother, 120, 109475. https://doi.org/10.1016/j.biopha.2019.109475
    Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Naga Prasad, S. V., Mutharasan, R. K., Naik, T. J., & Ardehali, H. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest, 124(2), 617-630. https://doi.org/10.1172/jci72931
    Kitsis, R. N., Riquelme, J. A., & Lavandero, S. (2018). Heart Disease and Cancer. Circulation, 138(7), 692-695. https://doi.org/10.1161/CIRCULATIONAHA.118.033907
    Kolomeichuk, S. N., Terrano, D. T., Lyle, C. S., Sabapathy, K., & Chambers, T. C. (2008). Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. Febs j, 275(8), 1889-1899. https://doi.org/10.1111/j.1742-4658.2008.06349.x
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., O'Sullivan, C., Collins, L., Chen, Y., Minami, E., Gill, E. A., Ueno, S., Yuan, C., Gold, J., & Murry, C. E. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 25(9), 1015-1024. https://doi.org/10.1038/nbt1327
    Lee, W. H., Liu, Y. W., Yang, L. T., & Tsai, W. C. (2016). Prognostic value of longitudinal strain of subepicardial myocardium in patients with hypertension. J Hypertens, 34(6), 1195-1200. https://doi.org/10.1097/hjh.0000000000000903
    Leong, S. L., Chaiyakunapruk, N., & Lee, S. W. (2017). Candidate Gene Association Studies of Anthracycline-induced Cardiotoxicity: A Systematic Review and Meta-analysis. Sci Rep, 7(1), 39. https://doi.org/10.1038/s41598-017-00075-1
    Li, D. L., Wang, Z. V., Ding, G., Tan, W., Luo, X., Criollo, A., Xie, M., Jiang, N., May, H., Kyrychenko, V., Schneider, J. W., Gillette, T. G., & Hill, J. A. (2016). Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation, 133(17), 1668-1687. https://doi.org/10.1161/circulationaha.115.017443
    Linschoten, M., Kamphuis, J. A. M., van Rhenen, A., Bosman, L. P., Cramer, M. J., Doevendans, P. A., Teske, A. J., & Asselbergs, F. W. (2020). Cardiovascular adverse events in patients with non-Hodgkin lymphoma treated with first-line cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP with rituximab (R-CHOP): a systematic review and meta-analysis. The Lancet Haematology, 7(4), e295-e308. https://doi.org/10.1016/s2352-3026(20)30031-4
    Linschoten, M., Teske, A. J., Cramer, M. J., van der Wall, E., & Asselbergs, F. W. (2018). Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circ Genom Precis Med, 11(1), e001753. https://doi.org/10.1161/CIRCGEN.117.001753
    Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med, 324(12), 808-815. https://doi.org/10.1056/nejm199103213241205
    Liu, F., Huang, J., & Liu, Z. (2019). Vincristine Impairs Microtubules and Causes Neurotoxicity in Cerebral Organoids. Neuroscience, 404, 530-540. https://doi.org/10.1016/j.neuroscience.2018.12.047
    Liu, J., Banchs, J., Mousavi, N., Plana, J. C., Scherrer-Crosbie, M., Thavendiranathan, P., & Barac, A. (2018). Contemporary Role of Echocardiography for Clinical Decision Making in Patients During and After Cancer Therapy. JACC Cardiovasc Imaging, 11(8), 1122-1131. https://doi.org/10.1016/j.jcmg.2018.03.025
    Liu, J., Fu, H., Chang, F., Wang, J., Zhang, S., Caudle, Y., Zhao, J., & Yin, D. (2016). Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway. Apoptosis, 21(5), 546-557. https://doi.org/10.1007/s10495-016-1231-8
    Liu, Y. W., Su, C. T., Huang, Y. Y., Yang, C. S., Huang, J. W., Yang, M. T., Chen, J. H., & Tsai, W. C. (2011). Left ventricular systolic strain in chronic kidney disease and hemodialysis patients. Am J Nephrol, 33(1), 84-90. https://doi.org/10.1159/000322709
    Liu, Y. W., Su, C. T., Sung, J. M., Wang, S. P., Su, Y. R., Yang, C. S., Tsai, L. M., Chen, J. H., & Tsai, W. C. (2013). Association of left ventricular longitudinal strain with mortality among stable hemodialysis patients with preserved left ventricular ejection fraction. Clin J Am Soc Nephrol, 8(9), 1564-1574. https://doi.org/10.2215/CJN.10671012
    Liu, Y. W., Tsai, W. C., Su, C. T., Lin, C. C., & Chen, J. H. (2009). Evidence of left ventricular systolic dysfunction detected by automated function imaging in patients with heart failure and preserved left ventricular ejection fraction. J Card Fail, 15(9), 782-789. https://doi.org/10.1016/j.cardfail.2009.05.006
    Liu, Y. W., Tseng, C. C., Su, C. T., Chang, Y. T., Chen, J. Y., Chen, L. Y., Tsai, L. M., Chen, J. H., Wang, M. C., & Tsai, W. C. (2014). The prognostic value of left ventricular global peak systolic longitudinal strain in chronic peritoneal dialysis patients. Int J Cardiol Heart Vasc, 5, 1-8. https://doi.org/10.1016/j.ijcha.2014.10.016
    Lu, Y., Chen, J., Xiao, M., Li, W., & Miller, D. D. (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res, 29(11), 2943-2971. https://doi.org/10.1007/s11095-012-0828-z
    Lyon, A. R., López-Fernández, T., Couch, L. S., Asteggiano, R., Aznar, M. C., Bergler-Klein, J., Boriani, G., Cardinale, D., Cordoba, R., Cosyns, B., Cutter, D. J., de Azambuja, E., de Boer, R. A., Dent, S. F., Farmakis, D., Gevaert, S. A., Gorog, D. A., Herrmann, J., Lenihan, D., Moslehi, J., Moura, B., Salinger, S. S., Stephens, R., Suter, T. M., Szmit, S., Tamargo, J., Thavendiranathan, P., Tocchetti, C. G., van der Meer, P., & van der Pal, H. J. H. (2022). 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J, 43(41), 4229-4361. https://doi.org/10.1093/eurheartj/ehac244
    Marfella, R., Scisciola, L., D'Onofrio, N., Maiello, C., Trotta, M. C., Sardu, C., Panarese, I., Ferraraccio, F., Capuano, A., Barbieri, M., Balestrieri, M. L., Napoli, C., & Paolisso, G. (2022). Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res, 184, 106448. https://doi.org/10.1016/j.phrs.2022.106448
    Mortality, G. B. D., & Causes of Death, C. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388(10053), 1459-1544. https://doi.org/10.1016/S0140-6736(16)31012-1
    Nicolás-Ávila, J. A., Lechuga-Vieco, A. V., Esteban-Martínez, L., Sánchez-Díaz, M., Díaz-García, E., Santiago, D. J., Rubio-Ponce, A., Li, J. L., Balachander, A., Quintana, J. A., Martínez-de-Mena, R., Castejón-Vega, B., Pun-García, A., Través, P. G., Bonzón-Kulichenko, E., García-Marqués, F., Cussó, L., N, A. G., González-Guerra, A., Roche-Molina, M., Martin-Salamanca, S., Crainiciuc, G., Guzmán, G., Larrazabal, J., Herrero-Galán, E., Alegre-Cebollada, J., Lemke, G., Rothlin, C. V., Jimenez-Borreguero, L. J., Reyes, G., Castrillo, A., Desco, M., Muñoz-Cánoves, P., Ibáñez, B., Torres, M., Ng, L. G., Priori, S. G., Bueno, H., Vázquez, J., Cordero, M. D., Bernal, J. A., Enríquez, J. A., & Hidalgo, A. (2020). A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell, 183(1), 94-109.e123. https://doi.org/10.1016/j.cell.2020.08.031
    Ou, D., Wang, Q., Huang, Y., Zeng, D., Wei, T., Ding, L., Li, X., Zheng, Q., & Jin, Y. (2016). Co-culture with neonatal cardiomyocytes enhances the proliferation of iPSC-derived cardiomyocytes via FAK/JNK signaling. BMC Dev Biol, 16, 11. https://doi.org/10.1186/s12861-016-0112-2
    Packer, M., Anker, S. D., Butler, J., Filippatos, G., Pocock, S. J., Carson, P., Januzzi, J., Verma, S., Tsutsui, H., Brueckmann, M., Jamal, W., Kimura, K., Schnee, J., Zeller, C., Cotton, D., Bocchi, E., Böhm, M., Choi, D. J., Chopra, V., Chuquiure, E., Giannetti, N., Janssens, S., Zhang, J., Gonzalez Juanatey, J. R., Kaul, S., Brunner-La Rocca, H. P., Merkely, B., Nicholls, S. J., Perrone, S., Pina, I., Ponikowski, P., Sattar, N., Senni, M., Seronde, M. F., Spinar, J., Squire, I., Taddei, S., Wanner, C., & Zannad, F. (2020). Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med, 383(15), 1413-1424. https://doi.org/10.1056/NEJMoa2022190
    Panda, S., & Kar, A. (2015). Combined Effects of Vincristine and Quercetin in Reducing Isoproterenol-Induced Cardiac Necrosis in Rats. Cardiovasc Toxicol, 15(4), 291-299. https://doi.org/10.1007/s12012-014-9291-x
    Park, C., Jin, C. Y., Kim, G. Y., Choi, I. W., Kwon, T. K., Choi, B. T., Lee, S. J., Lee, W. H., & Choi, Y. H. (2008). Induction of apoptosis by esculetin in human leukemia U937 cells through activation of JNK and ERK. Toxicol Appl Pharmacol, 227(2), 219-228. https://doi.org/10.1016/j.taap.2007.10.003
    Peng, Y., Li, Z., Zhang, J., Dong, Y., Zhang, C., Dong, Y., Zhai, Y., Zheng, H., Liu, M., Zhao, J., Du, W., Liu, Y., Sun, L., Li, X., Tao, H., Long, D., Zhao, X., Du, X., Ma, C., Wang, Y., & Dong, J. (2024). Low-Dose Colchicine Ameliorates Doxorubicin Cardiotoxicity Via Promoting Autolysosome Degradation. J Am Heart Assoc, 13(9), e033700. https://doi.org/10.1161/jaha.123.033700
    Peter, A. K., Bjerke, M. A., & Leinwand, L. A. (2016). Biology of the cardiac myocyte in heart disease. Mol Biol Cell, 27(14), 2149-2160. https://doi.org/10.1091/mbc.E16-01-0038
    Quagliariello, V., De Laurentiis, M., Rea, D., Barbieri, A., Monti, M. G., Carbone, A., Paccone, A., Altucci, L., Conte, M., Canale, M. L., Botti, G., & Maurea, N. (2021). The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol, 20(1), 150. https://doi.org/10.1186/s12933-021-01346-y
    Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of, Cardiovascular Imaging. (2016). Eur Heart J Cardiovasc Imaging, 17(4), 412. https://doi.org/10.1093/ehjci/jew041
    Roberts, W. C., Glancy, D. L., & DeVita, V. T., Jr. (1968). Heart in malignant lymphoma (Hodgkin's disease, lymphosarcoma, reticulum cell sarcoma and mycosis fungoides). A study of 196 autopsy cases. Am J Cardiol, 22(1), 85-107. https://doi.org/10.1016/0002-9149(68)90250-6
    Rong, J., Li, L., Jing, L., Fang, H., & Peng, S. (2016). JAK2/STAT3 Pathway Mediates Protection of Metallothionein Against Doxorubicin-Induced Cytotoxicity in Mouse Cardiomyocytes. Int J Toxicol, 35(3), 317-326. https://doi.org/10.1177/1091581815614261
    Ross, R. M. (2003). ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med, 167(10), 1451; author reply 1451. https://doi.org/10.1164/ajrccm.167.10.950
    Sabatino, J., De Rosa, S., Tammè, L., Iaconetti, C., Sorrentino, S., Polimeni, A., Mignogna, C., Amorosi, A., Spaccarotella, C., Yasuda, M., & Indolfi, C. (2020). Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol, 19(1), 66. https://doi.org/10.1186/s12933-020-01040-5
    Santoro, C., Arpino, G., Esposito, R., Lembo, M., Paciolla, I., Cardalesi, C., de Simone, G., Trimarco, B., De Placido, S., & Galderisi, M. (2017). 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging, 18(8), 930-936. https://doi.org/10.1093/ehjci/jex033
    Saro Armenian, S. B. (2018). Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am Soc Clin Oncol Educ Book., 23(38), 3-12. https://doi.org/10.1200/EDBK_100015.
    Shati, A. A. (2020). Doxorubicin-induces NFAT/Fas/FasL cardiac apoptosis in rats through activation of calcineurin and P38 MAPK and inhibition of mTOR signalling pathways. Clin Exp Pharmacol Physiol, 47(4), 660-676. https://doi.org/10.1111/1440-1681.13225
    Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol, 19(8), 817-828. https://doi.org/10.1016/s0022-2828(87)80392-9
    Spallarossa, P., Garibaldi, S., Altieri, P., Fabbi, P., Manca, V., Nasti, S., Rossettin, P., Ghigliotti, G., Ballestrero, A., Patrone, F., Barsotti, A., & Brunelli, C. (2004). Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol, 37(4), 837-846. https://doi.org/10.1016/j.yjmcc.2004.05.024
    Suliman, H. B., Carraway, M. S., Ali, A. S., Reynolds, C. M., Welty-Wolf, K. E., & Piantadosi, C. A. (2007). The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest, 117(12), 3730-3741. https://doi.org/10.1172/jci32967
    Tadic, M., & Cuspidi, C. (2017). The Role of Echocardiography in Detection of Chemotherapy-Induced Cardiotoxicity in Breast Cancer Patients. International Journal of Cancer Management, 10(5). https://doi.org/10.5812/ijcm.8109
    Thavendiranathan, P., Poulin, F., Lim, K. D., Plana, J. C., Woo, A., & Marwick, T. H. (2014). Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol, 63(25 Pt A), 2751-2768. https://doi.org/10.1016/j.jacc.2014.01.073
    Tilly, H., Gomes da Silva, M., Vitolo, U., Jack, A., Meignan, M., Lopez-Guillermo, A., Walewski, J., André, M., Johnson, P. W., Pfreundschuh, M., & Ladetto, M. (2015). Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 26 Suppl 5, v116-125. https://doi.org/10.1093/annonc/mdv304
    Toufan, M., Pourafkari, L., Ghahremani Nasab, L., Esfahani, A., Sanaat, Z., Nikanfar, A., & Nader, N. D. (2017). Two-dimensional strain echocardiography for detection of cardiotoxicity in breast cancer patients undergoing chemotherapy. J Cardiovasc Thorac Res, 9(1), 29-34. https://doi.org/10.15171/jcvtr.2017.04
    Tsai, C. F., Yang, S. F., Lo, C. H., Chu, H. J., & Ueng, K. C. (2021). Role of the ROS-JNK Signaling Pathway in Hypoxia-Induced Atrial Fibrotic Responses in HL-1 Cardiomyocytes. Int J Mol Sci, 22(6). https://doi.org/10.3390/ijms22063249
    Voors, A. A., Angermann, C. E., Teerlink, J. R., Collins, S. P., Kosiborod, M., Biegus, J., Ferreira, J. P., Nassif, M. E., Psotka, M. A., Tromp, J., Borleffs, C. J. W., Ma, C., Comin-Colet, J., Fu, M., Janssens, S. P., Kiss, R. G., Mentz, R. J., Sakata, Y., Schirmer, H., Schou, M., Schulze, P. C., Spinarova, L., Volterrani, M., Wranicz, J. K., Zeymer, U., Zieroth, S., Brueckmann, M., Blatchford, J. P., Salsali, A., & Ponikowski, P. (2022). The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med, 28(3), 568-574. https://doi.org/10.1038/s41591-021-01659-1
    Wang, L., Tan, T. C., Halpern, E. F., Neilan, T. G., Francis, S. A., Picard, M. H., Fei, H., Hochberg, E. P., Abramson, J. S., Weyman, A. E., Kuter, I., & Scherrer-Crosbie, M. (2015). Major Cardiac Events and the Value of Echocardiographic Evaluation in Patients Receiving Anthracycline-Based Chemotherapy. Am J Cardiol, 116(3), 442-446. https://doi.org/10.1016/j.amjcard.2015.04.064
    Wang, L., Wang, C., Tao, Z., Zhao, L., Zhu, Z., Wu, W., He, Y., Chen, H., Zheng, B., Huang, X., Yu, Y., Yang, L., Liang, G., Cui, R., & Chen, T. (2019). Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J Exp Clin Cancer Res, 38(1), 460. https://doi.org/10.1186/s13046-019-1424-4
    Wang, T. H., Wang, H. S., Ichijo, H., Giannakakou, P., Foster, J. S., Fojo, T., & Wimalasena, J. (1998). Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem, 273(9), 4928-4936. https://doi.org/10.1074/jbc.273.9.4928
    Wang, W., Chen, X. K., Zhou, L., Wang, F., He, Y. J., Lu, B. J., Hu, Z. G., Li, Z. X., Xia, X. W., Wang, W. E., Zeng, C. Y., & Li, L. P. (2024). Chemokine CCL2 promotes cardiac regeneration and repair in myocardial infarction mice via activation of the JNK/STAT3 axis. Acta Pharmacol Sin, 45(4), 728-737. https://doi.org/10.1038/s41401-023-01198-0
    Wu, Y. P., Zhang, S., Xin, Y. F., Gu, L. Q., Xu, X. Z., Zhang, C. D., & You, Z. Q. (2021). Evidences for the mechanism of Shenmai injection antagonizing doxorubicin-induced cardiotoxicity. Phytomedicine, 88, 153597. https://doi.org/10.1016/j.phymed.2021.153597
    Xu, X., Mao, C., Zhang, C., Zhang, M., Gong, J., & Wang, X. (2023). Salvianolic Acid B Inhibits Ferroptosis and Apoptosis during Myocardial Ischemia/Reperfusion Injury via Decreasing the Ubiquitin-Proteasome Degradation of GPX4 and the ROS-JNK/MAPK Pathways. Molecules, 28(10). https://doi.org/10.3390/molecules28104117
    Yan, H., He, L., Lv, D., Yang, J., & Yuan, Z. (2024). The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules, 14(2). https://doi.org/10.3390/biom14020243
    Yao, Y., Chen, R., Ying, C., Zhang, G., Rui, T., & Tao, A. (2017). Interleukin-33 attenuates doxorubicin-induced cardiomyocyte apoptosis through suppression of ASK1/JNK signaling pathway. Biochem Biophys Res Commun, 493(3), 1288-1295. https://doi.org/10.1016/j.bbrc.2017.09.153
    Yeh, E. T., & Bickford, C. L. (2009). Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol, 53(24), 2231-2247. https://doi.org/10.1016/j.jacc.2009.02.050
    Yin, L., Mao, Y., Song, H., Wang, Y., Zhou, W., & Zhang, Z. (2017). Vincristine alleviates adriamycin-induced nephropathy through stabilizing actin cytoskeleton. Cell Biosci, 7, 1. https://doi.org/10.1186/s13578-016-0129-z
    Yoon, G. J., Telli, M. L., Kao, D. P., Matsuda, K. Y., Carlson, R. W., & Witteles, R. M. (2010). Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol, 56(20), 1644-1650. https://doi.org/10.1016/j.jacc.2010.07.023
    Zamorano, J. L., Lancellotti, P., Rodriguez Munoz, D., Aboyans, V., Asteggiano, R., Galderisi, M., Habib, G., Lenihan, D. J., Lip, G. Y. H., Lyon, A. R., Lopez Fernandez, T., Mohty, D., Piepoli, M. F., Tamargo, J., Torbicki, A., Suter, T. M., & Group, E. S. C. S. D. (2016). 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J, 37(36), 2768-2801. https://doi.org/10.1093/eurheartj/ehw211
    Zeke, A., Misheva, M., Reményi, A., & Bogoyevitch, M. A. (2016). JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev, 80(3), 793-835. https://doi.org/10.1128/mmbr.00043-14
    Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med, 18(11), 1639-1642. https://doi.org/10.1038/nm.2919
    Zhang, Y., Liao, H., Zhong, S., Gao, F., Chen, Y., Huang, Z., Lu, S., Sun, T., Wang, B., Li, W., Xu, H., Zheng, F., & Shi, G. (2015). Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation. Sci Rep, 5, 11809. https://doi.org/10.1038/srep11809
    Zhao, M., Li, N., & Zhou, H. (2023). SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des Devel Ther, 17, 2011-2023. https://doi.org/10.2147/dddt.S418321
    Zhou, W., & Cai, D. (2022). Midazolam suppresses ischemia/reperfusion-induced cardiomyocyte apoptosis by inhibiting the JNK/p38 MAPK signaling pathway. Can J Physiol Pharmacol, 100(2), 117-124. https://doi.org/10.1139/cjpp-2021-0289
    Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O. E., Woerle, H. J., Broedl, U. C., & Inzucchi, S. E. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med, 373(22), 2117-2128. https://doi.org/10.1056/NEJMoa1504720

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE