簡易檢索 / 詳目顯示

研究生: 蘇郁淇
Su, Yu-Qi
論文名稱: 甲醇部分氧化及自熱重組於噴霧反應器之氫氣製造及最佳化
Hydrogen production and optimization of methanol partial oxidation and autothermal reforming in a spray reactor
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 73
中文關鍵詞: 甲醇部分氧化甲醇自熱重組噴霧白金催化劑鎳銅催化劑反應曲面法Box-Behnken設計方差分析最佳化氫氣產率氫氣製造
外文關鍵詞: Partial oxidation of methanol (POM), Autothermal reforming (ATR), Sprays, Platinum (Pt) catalysts, Nickel (Ni)-Copper (Cu) catalyst, Response surface methodology (RSM), Box-Behnken Design (BBD), Analysis of variance (ANOVA), Optimization, H2 yield, Hydrogen production
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為提升甲醇熱化學產氫之產率,於第一部分對白金催化劑進行實驗,以確定其對自熱重組的適用性,同時該實驗將通過改變蒸汽對甲醇之莫耳比和氧氣對甲醇之莫耳比來分析自熱重組的性能,此外,將比較甲醇自熱重組及部分氧化之優劣。第二部分,將鎳銅催化劑置於噴霧反應器中進行甲醇部分氧化反應並觀察其性能,並於實驗結果的基礎上使用最佳化反應曲面法分析結果趨勢及最佳組。隨後,通過方差分析探討操作條件的重要性和適用性。最後,將本研究的鎳銅催化劑與白金催化劑進行比較。
    第一部分旨在使用白金催化劑以冷啟動的方式通過噴霧進行甲醇自熱重組,主要關注操作條件對製氫及甲醇轉化之影響,同時,進行甲醇的甲醇自熱重組和部分氧化的比較。其部分氧化之結果表明在氧氣對甲醇之莫耳比為0.7時,可以獲得最高的氫氣及一氧化碳濃度,甲醇轉化率達到100%。但通過自熱重組,於相同條件下並將蒸汽對甲醇之莫耳比調整為1.5的甲醇轉化率卻是60%。然而,值得一提的是在蒸汽對甲醇之莫耳比為0.5時,觀察到隨著氧氣對甲醇之莫耳比的增加,甲醇轉化率高達100%,並氫氣產率高於部分氧化。結果表明,隨著蒸汽對甲醇之莫耳比的降低和氧氣對甲醇之莫耳比的提高,甲醇轉化率及反應溫度都會顯著提高。總體而言,在蒸汽對甲醇之莫耳比為0.5和氧氣對甲醇之莫耳比為0.7之條件下,自熱重組擁有最高氫氣產率1.697 mol (mol CH3OH)-1。
    在第二部分中,為了降低實驗成本,將使用新型的鎳銅催化劑進行甲醇部分氧化產生氫氣,並透過反應曲面法中的Box-Behnken設計實現實驗設計的優化,其中鎳銅催化劑相較於其他貴金屬催化劑擁有更低的價格,而Box-Behnken設計可以有效的減少實驗組數進而降低成本。實驗前,以氧氣對甲醇莫爾比(0.5-0.7)、預熱溫度(150-250 °C)及鎳的重量百分比(10-30%)作為實驗設計的變量因子。實驗後,透過反應曲面法分析出最佳組(氧氣對甲醇莫爾比為0.5、預熱溫度為150 °C及鎳的重量百分比為10%)並通過方差分析(ANOVA)分析出氧氣對甲醇莫耳比擁有最好的重要性及適用性。對催化劑進行分析SEM、EDS及XRD,分別探討催化劑的表面結構、元素組成及物理結構。結果表明,在所有操作條件下,甲醇轉化率皆為100%而氫氣產率最高為2 mol (mol CH3OH)-1。此外,發現當鎳的重量百分比越高,反應活性越趨向高溫。

    Nowadays, the development of alternative energy is regarded as a key solution to reduce the environmental issue. Hydrogen is one of the promising clean energy applied in power generation and transport. In particular, due to the considerable progress in the development of fuel cells, the researches of hydrogen production applied in vehicles, portable devices and small-scale power plants have attracted much attention recently. Concerning to hydrogen production, the thermochemical methods have been widely used, such as water gas shift reaction (WGSR), steam reforming (SR), partial oxidation (POX), and autothermal reforming (ATR). Therefore, the first part of this study conducts an experimental investigation into the Pt/Al2O3 catalyst to figure out its suitability for ATR, while the experiment will analyze the performance of ATR by altering steam-to-methanol and oxygen-to-methanol molar ratios. In addition, the comparison between methanol ATR and POX will be explored. In the second part of this study, the Ni-Cu/Al2O3 catalyst is used under a spray reactor for POM and observe the performance. The operating conditions of O2/C ratio, preheating temperature, and wt% of Ni are considered in BBD of RSM. After experiment, the impact of each operating condition will be explored on the results. Base on experiment result, the optimization case was analyzed by BBD of RSM and the significance and suitability of operating conditions by ANOVA. Finally, the catalyst of this study will be compared with h-BN-Pt/Al2O3 (Green Hydrotech Inc.).
    The first part aims to perform autothermal reforming (ATR) of methanol by sprays via the h-BN Pt catalyst with a cold start, mainly focusing on the effects of operating conditions on hydrogen production and methanol conversion. Meanwhile, the comparison between ATR and POX of methanol is also carried out. The results of POM indicate that the highest H2 and CO concentrations are obtained at the air-to-methanol molar ratio (O2/C) of 0.7, and the CH3OH conversion can reach 100%. However, through the ATR process, the methanol conversion reaches 60% at O2/C=0.7 with steam-to-methanol molar ratio (S/C) of 1.5. At S/C=0.5, it is observed that the CH3OH conversion is up to 100% with increasing the O2/C ratio, and the H2 yield is higher than that of POM. The effects of S/C and O2/C ratios on ATR indicate that the CH3OH conversion and reaction temperature are significantly increased with decreasing the S/C ratio and increasing the O2/C ratio. Overall, the highest H2 yield from ATR is 1.697 mol (mol CH3OH)-1 and occurs at S/C =0.5 and O2/C=0.7.
    In second part, the Ni-Cu/Al2O3 catalyst and Box-Behnken design (BBD) of response surface methodology (RSM) are used for reducing experiment cost because Ni-Cu/Al2O3 is cheaper than other noble metal catalyst and BBD could decrease experimental cases to reduce cost. Therefore, a novel Ni-Cu/Al2O3 catalyst is used for hydrogen production. Partial oxidation of methanol is selected as the main thermochemical reaction for hydrogen production and the reactor is installed with a spray. BBD is utilized not only for the experiments but also to achieve the optimization of process design. The operating conditions varied for the experimental design are O2/C ratio (0.5-0.7), preheating temperature (150-250 °C), and wt% of Ni (10-30%). The catalyst is analyzed under SEM, EDS, and XRD to explore its surface structure, elemental composition, and physical structure respectively. Results show that the methanol conversions are 100% for all operating conditions, while the reaction temperature ranges from 160 to 750 °C. In addition, the significance and suitability of operating conditions are analyzed by ANOVA. The results of RSM indicate that the highest hydrogen yield is 2 mol (mol CH3OH)-1 under the operating conditions of O2/C=0.5, preheating temperature=150 °C, and 10 wt% of Ni. Compared with h-BN-Pt/Al2O3 catalyst, the Ni¬¬-Cu/Al2O3 catalyst has a higher activity for H2 production. In ANOVA, the O2/C ratio is the most influential factor in the H2 yield. Moreover, the interaction of the O2/C ratio and Ni content is sound, and this result explains that changing Ni content in the catalyst will affect the trend of H2 yield under each O2/C.

    中文摘要 i Abstract iii 誌謝 vi Table of Contents vii List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation and objectives 3 1.3. A schematic of the experimental procedure 4 Chapter 2 Literature review 7 2.1. Hydrogen production from partial oxidation and autothermal reforming of methanol from a cold start in sprays 7 2.2. Optimization for hydrogen production from partial oxidation via Ni-Cu/Al2O3 catalyst under sprays 9 Chapter 3 Theory and Methodology 13 3.1. Catalysts preparation 13 3.2. Box-Behnken Design 13 3.3. Analysis of variance 16 3.4. Reaction system 18 3.5. Experimental procedure 20 Chapter 4 Results and Discussion 24 4.1. Hydrogen production from partial oxidation and autothermal reforming of methanol from a cold start in sprays 24 4.1.1. Performances of POM at various O2/C ratios 24 4.1.2. Performances of ATR at various O2/C 30 4.1.3. Steady-state behavior of ATR 35 4.2. Optimization for hydrogen production from partial oxidation via Ni-Cu/Al2O3 catalyst under sprays 42 4.2.1. Catalyst characterization. 42 4.2.2. RSM of POM under various operating 48 4.2.3. Effects of the process parameters on the hydrogen yield using ANOVA 53 4.2.4. Optimal case of the reaction temperature and gas formation in transient 57 4.2.5. Compared between Ni-Cu/Al2O3 and h-BN-Pt/Al2O3 61 Chapter 5 Conclusions and Future works 65 5.1. Conclusions 65 5.2. Future works 67 References 68 自述 73

    [1] Sengodan S, Lan R, Humphreys J, Du D, Xu W, Wang H, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renewable and Sustainable Energy Reviews 2018;82:761-80.
    [2] Han J, Liu Y, Dai F, Zhao R, Wang L. Fabrication of CdSe/CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Applied Surface Science 2018;459:520-6.
    [3] Liao XM, Caps V, Chu W, Pitchon V. Highly stable bimetallic Au-Cu supported on Al2O3 for selective CO oxidation in H2-rich gas: Effects of Cu/Au atomic ratio and sensitive influence of particle size. RSC Advances 2016;6(6):4899-907.
    [4] Żukowski W, Berkowicz G. Hydrogen production through the partial oxidation of methanol using N2O in a fluidised bed of an iron-chromium catalyst. International Journal of Hydrogen Energy 2017;42(47):28247-53.
    [5] Araiza DG, Gómez-Cortés A, Díaz G. Partial oxidation of methanol over copper supported on nanoshaped ceria for hydrogen production. Catalysis Today 2017;282:185-94.
    [6] Kočí K, Reli M, Edelmannová M, Troppová I, Drobná H, Rokicińska A, et al. Photocatalytic hydrogen production from methanol over Nd/TiO2. Journal of Photochemistry and Photobiology A: Chemistry 2018;366:55-64.
    [7] Iulianelli A, Dalena F, Basile A. Chapter 7 - Steam Reforming, Preferential Oxidation, and Autothermal Reforming of Ethanol for Hydrogen Production in Membrane Reactors. In: Basile A, Iulianelli A, Dalena F, Veziroğlu TN, editors. Ethanol. Elsevier; 2019, p. 193-213.
    [8] Schuyten S, Guerrero S, Miller JT, Shibata T, Wolf EE. Characterization and oxidation states of Cu and Pd in Pd–CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation. Applied Catalysis A: General 2009;352(1):133-44.
    [9] Lei Y, Luo Y, Li X, Lu J, Mei Z, Peng W, et al. The role of samarium on Cu/Al2O3 catalyst in the methanol steam reforming for hydrogen production. Catalysis Today 2018;307:162-8.
    [10] Wei P, Xia W, Li JZ, Long H, Chen J, Li T, et al. Single-phase Ni3Sn alloy alkali-leached for hydrogen production from methanol decomposition. Renewable Energy 2015;78:357-63.
    [11] Zheng T, Zhou W, Yu W, Ke Y, Liu Y, Liu R, et al. Methanol steam reforming performance optimisation of cylindrical microreactor for hydrogen production utilising error backpropagation and genetic algorithm. Chemical Engineering Journal 2019;357:641-54.
    [12] Chen W-H, Shen C-T. Partial oxidation of methanol over a Pt/Al2O3 catalyst enhanced by sprays. Energy 2016;106:1-12.
    [13] Sepehri S, Rezaei M, Wang Y, Younesi A, Arandiyan H. The evaluation of autothermal methane reforming for hydrogen production over Ni/CeO2 catalysts. International Journal of Hydrogen Energy 2018;43(49):22340-6.
    [14] Chen W-H, Guo Y-Z. Hydrogen production characteristics of methanol partial oxidation under sprays with ultra-low Pt and Pd contents in catalysts. Fuel 2018;222:599-609.
    [15] Jampa S, Jamieson AM, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S. Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2–ZrO2 catalysts. International Journal of Hydrogen Energy 2017;42(22):15073-84.
    [16] Iruretagoyena D, Hellgardt K, Chadwick D. Towards autothermal hydrogen production by sorption-enhanced water gas shift and methanol reforming: A thermodynamic analysis. International Journal of Hydrogen Energy 2018;43(9):4211-22.
    [17] Mosafer M, Hafizi A, Rahimpour MR, Bolhasani A. Optimization of regeneration protocol for Pd/Ag/α-Al2O3 catalyst of the acetylene hydrogenation process using response surface methodology. Journal of Natural Gas Science and Engineering 2016;34:1382-91.
    [18] Mosca Angelucci D, Piscitelli D, Tomei MC. Pentachlorophenol biodegradation in two-phase bioreactors operated with absorptive polymers: Box-Behnken experimental design and optimization by response surface methodology. Process Safety and Environmental Protection 2019;131:105-15.
    [19] Richards N, Needels J, Erickson P. Autothermal-reformation enhancement using a stratified-catalyst technique. International Journal of Hydrogen Energy 2017;42(41):25914-23.
    [20] Luneau M, Gianotti E, Meunier FC, Mirodatos C, Puzenat E, Schuurman Y, et al. Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas. Applied Catalysis B: Environmental 2017;203:289-99.
    [21] Chen W-H, Lin B-J. Hydrogen production and thermal behavior of methanol autothermal reforming and steam reforming triggered by microwave heating. International Journal of Hydrogen Energy 2013;38(24):9973-83.
    [22] Ghasemzadeh K, Andalib E, Basile A. Evaluation of dense Pd–Ag membrane reactor performance during methanol steam reforming in comparison with autothermal reforming using CFD analysis. International Journal of Hydrogen Energy 2016;41(20):8745-54.
    [23] Pérez-Hernández R, Gutiérrez-Martínez A, Espinosa-Pesqueira ME, Estanislao ML, Palacios J. Effect of the bimetallic Ni/Cu loading on the ZrO2 support for H2 production in the autothermal steam reforming of methanol. Catalysis Today 2015;250:166-72.
    [24] Richards NO, Erickson PA. An investigation of a stratified catalyst bed for small-scale hydrogen production from methanol autothermal reforming. International Journal of Hydrogen Energy 2014;39(31):18077-83.
    [25] Singh H, Yadav R, Farooqui SA, Dudnyk O, Sinha AK. Nanoporous nickel oxide catalyst with uniform Ni dispersion for enhanced hydrogen production from organic waste. International Journal of Hydrogen Energy 2019;44(36):19573-84.
    [26] Cross A, Miller JT, Danghyan V, Mukasyan AS, Wolf EE. Highly active and stable Ni-Cu supported catalysts prepared by combustion synthesis for hydrogen production from ethanol. Applied Catalysis A: General 2019;572:124-33.
    [27] González-Cobos J, Ruiz-López E, Valverde JL, de Lucas-Consuegra A. Electrochemical promotion of a dispersed Ni catalyst for H2 production via partial oxidation of methanol. International Journal of Hydrogen Energy 2016;41(42):19418-29.
    [28] Chang F-W, Roselin LS, Ou T-C. Hydrogen production by partial oxidation of methanol over bimetallic Au–Ru/Fe2O3 catalysts. Applied Catalysis A: General 2008;334(1):147-55.
    [29] Wang H-S, Huang K-Y, Huang Y-J, Su Y-C, Tseng F-G. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield. Applied Energy 2015;138:21-30.
    [30] Chang F-W, Lai S-C, Roselin LS. Hydrogen production by partial oxidation of methanol over ZnO-promoted Au/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical 2008;282(1):129-35.
    [31] Yang H-C, Chang F-W, Roselin LS. Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts. Journal of Molecular Catalysis A: Chemical 2007;276(1):184-90.
    [32] Lattner JR, Harold MP. Autothermal reforming of methanol: Experiments and modeling. Catalysis Today 2007;120(1):78-89.
    [33] Koga H, Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H. Autothermal reforming of methanol using paper-like Cu/ZnO catalyst composites prepared by a papermaking technique. Applied Catalysis A: General 2006;309(2):263-9.
    [34] Chen W-H, Syu Y-J. Thermal behavior and hydrogen production of methanol steam reforming and autothermal reforming with spiral preheating. International Journal of Hydrogen Energy 2011;36(5):3397-408.
    [35] Arratibel A, Pacheco Tanaka DA, van Sint Annaland M, Gallucci F. 3 - Membrane reactors for autothermal reforming of methane, methanol, and ethanol. In: Basile A, Di Paola L, Hai Fl, Piemonte V, editors. Membrane Reactors for Energy Applications and Basic Chemical Production. Woodhead Publishing; 2015, p. 61-98.
    [36] Yoon HC, Erickson PA, Kim H-M. Lowering the O2/CH3OH ratio in autothermal reforming of methanol by using a reduced copper-based catalyst. International Journal of Hydrogen Energy 2008;33(22):6619-26.
    [37] Mo L, Wan AH, Zheng X, Yeh C-T. Selective production of hydrogen from partial oxidation of methanol over supported silver catalysts prepared by method of redox coprecipitation. Catalysis Today 2009;148(1):124-9.
    [38] Chang F-W, Yu H-Y, Roselin LS, Yang H-C, Ou T-C. Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M=Fe, Co, Zn) composite oxides. Applied Catalysis A: General 2006;302(2):157-67.
    [39] Chen W-H, Guo Y-Z, Chen C-C. Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor. Applied Energy 2018;232:79-88.
    [40] Hernández-Ramírez E, Wang JA, Chen LF, Valenzuela MA, Dalai AK. Partial oxidation of methanol catalyzed with Au/TiO2, Au/ZrO2 and Au/ZrO2-TiO2 catalysts. Applied Surface Science 2017;399:77-85.
    [41] Chi H, Andolina CM, Li J, Curnan MT, Saidi WA, Zhou G, et al. Dependence of H2 and CO2 selectivity on Cu oxidation state during partial oxidation of methanol on Cu/ZnO. Applied Catalysis A: General 2018;556:64-72.
    [42] Alejo L, Lago R, Peña MA, Fierro JLG. Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts. Applied Catalysis A: General 1997;162(1):281-97.
    [43] Chen W-H, Jheng J-G, Yu AB. Hydrogen generation from a catalytic water gas shift reaction under microwave irradiation. International Journal of Hydrogen Energy 2008;33(18):4789-97.
    [44] Pham TLM, Vo D-VN, Nguyen HNT, Pham-Tran N-N. CH versus OH bond scission in methanol decomposition on Pt(111): Role of the dispersion interaction. Applied Surface Science 2019;481:1327-34.
    [45] Kähler K, Holz MC, Rohe M, van Veen AC, Muhler M. Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts. Journal of Catalysis 2013;299:162-70.
    [46] Xu G, Chen X, Zhang Z-G. Temperature-staged methanation: An alternative method to purify hydrogen-rich fuel gas for PEFC. Chemical Engineering Journal 2006;121(2):97-107.
    [47] Tada S, Ikeda S, Shimoda N, Honma T, Takahashi M, Nariyuki A, et al. Sponge Ni catalyst with high activity in CO2 methanation. International Journal of Hydrogen Energy 2017;42(51):30126-34.
    [48] Le TA, Kim MS, Lee SH, Kim TW, Park ED. CO and CO2 methanation over supported Ni catalysts. Catalysis Today 2017;293-294:89-96.
    [49] Chen W-H, Shen C-T, Lin B-J, Liu S-C. Hydrogen production from methanol partial oxidation over Pt/Al2O3 catalyst with low Pt content. Energy 2015;88:399-407.
    [50] Yang J, Liu Y, Deng J, Xie S, Hou Z, Zhao X, et al. PtxCo/meso-MnOy: Highly efficient catalysts for low-temperature methanol combustion. Catalysis Today 2019;332:168-76.
    [51] Ipsakis D, Ouzounidou M, Papadopoulou S, Seferlis P, Voutetakis S. Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system. Applied Energy 2017;208:703-18.
    [52] Vita A, Pino L, Italiano C, Palella A. Chapter 6 - Steam Reforming, Partial Oxidation, and Autothermal Reforming of Ethanol for Hydrogen Production in Conventional Reactors. In: Basile A, Iulianelli A, Dalena F, Veziroğlu TN, editors. Ethanol. Elsevier; 2019, p. 159-91.
    [53] Chen W-H, Lin B-J. Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide. Applied Energy 2013;101:551-9.
    [54] Schildhauer TJ, Geissler K. Reactor concept for improved heat integration in autothermal methanol reforming. International Journal of Hydrogen Energy 2007;32(12):1806-10.
    [55] Yang R-X, Chuang K-H, Wey M-Y. Hydrogen production through methanol steam reforming: Effect of synthesis parameters on Ni–Cu/CaO–SiO2 catalysts activity. International Journal of Hydrogen Energy 2014;39(34):19494-501.
    [56] Rabe S, Vogel F. A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst. Applied Catalysis B: Environmental 2008;84(3):827-34.
    [57] Ou T-C, Chang F-W, Roselin LS. Production of hydrogen via partial oxidation of methanol over bimetallic Au–Cu/TiO2 catalysts. Journal of Molecular Catalysis A: Chemical 2008;293(1):8-16.
    [58] Wang G, Zhang S, Zhu X, Li C, Shan H. Dehydrogenation versus hydrogenolysis in the reaction of light alkanes over Ni-based catalysts. Journal of Industrial and Engineering Chemistry 2020;86:1-12.
    [59] Wang Y, Chen G, Li Y, Yan B, Pan D. Experimental study of the bio-oil production from sewage sludge by supercritical conversion process. Waste Management 2013;33(11):2408-15.
    [60] Dang C, Wang H, Yu H, Peng F. Co-Cu-CaO catalysts for high-purity hydrogen from sorption-enhanced steam reforming of glycerol. Applied Catalysis A: General 2017;533:9-16.
    [61] Xia Z, Lu H, Liu H, Zhang Z, Chen Y. Cyclohexane dehydrogenation over Ni-Cu/SiO2 catalyst: Effect of copper addition. Catalysis Communications 2017;90:39-42.

    下載圖示 校內:2025-07-21公開
    校外:2025-07-21公開
    QR CODE