簡易檢索 / 詳目顯示

研究生: 邱普照
Kow, Pu-Zhao
論文名稱: 肖德估計以及不含時納維-斯托克斯方程在外域內的漸進行為
Schauder's Estimates and Asymptotic Behavior of Solutions of the Stationary Navier-Stokes Equation in an Exterior Domain
指導教授: 林景隆
Lin, Ching-Lung
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 34
中文關鍵詞: 納維-斯托克斯方程規律性肖德估計
外文關鍵詞: Navier-Stokes Equation, regularity
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 納維-斯托克斯方程,以克勞德-路易-納維和喬治-斯托克斯命名,是一組描述流體物質的方程組。他們是最有用的方程組之一,因為它描述了許多物理上以及工程上有趣的現象。它們可以用於模擬大氣、洋流、管道中的水流以及翼型周圍的氣流等等。它們的完整版以及簡化版都可以幫助飛行器和汽車的設計、血液循環的研究、發電廠的設計、污染分析以及許多其他用途。在純數學理論的研究上,納維-斯托克斯方程也引起了許多數學家的注意。

    在這篇論文中,我們會對[11] 關於不可壓縮流體在有界障礙物以外的漸進行為的結果進行改進。在比起[11] 更少的假設下,任何非零速度場都有最小衰減率 exp(-C|x|^(3/2) log|x|)。我們的證明使用了適當的卡爾曼估計以及規律性結果,也就是不含時納維-斯托克斯方程的肖德估計。

    The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the motion of viscous fluid substances. Navier-Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier-Stokes equations in their full and simplified forms help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. The Navier-Stokes equations are also of great interest in a purely mathematical sense.

    In this thesis we improve the result in [11], which concern about the asymptotic behavior of an incompressible fluid around a bounded obstacle. Under some assumptions weaker than [11], any nontrivial velocity field obeys a minimal decaying rate exp(-C|x|^(3/2) log|x|) at infinity. Our proof is based on appropriate Carleman estimates and the regularity result, namely the Schauder's Estimate for stationary Navier-Stokes
    equation.

    中文摘要- Chinese Summary i 英文摘要- English Summary ii 誌謝- Acknowledgements iii 1 Introduction 1 2 Derivation of Navier-Stokes equation 2 3 Reduced System and regularity 5 4 Scaling and Carleman Estimates 26 5 Proof of Theorem 1.1 27 6 Auxiliary Lemmas 32

    [1] Bourgain, Jean; Kenig, Carlos E. On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math. 161 (2005), no. 2, 389-426.

    [2] Davey, Blair Some quantitative unique continuation results for eigenfunctions of the magnetic Schrödinger operator. Comm. Partial Differential Equations 39
    (2014), no. 5, 876-945.

    [3] Galdi, G. P. An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems. Second edition. Springer Monographs in Mathematics. Springer, New York, 2011. xiv+1018 pp. ISBN: 978-0-387-09619-3

    [4] Giaquinta, Mariano; Martinazzi, Luca An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Second edition. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 11. Edizioni della Normale, Pisa, 2012. xiv+366 pp. ISBN: 978-88-7642-442-7; 978-88-7642-443-4

    [5] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp. ISBN: 3-540-41160-7

    [6] Hörmander, Lars The analysis of linear partial differential operators. III. Pseudodifferential operators. Reprint of the 1994 edition. Classics in Mathematics. Springer, Berlin, 2007. viii+525 pp. ISBN: 978-3-540-49937-4

    [7] Kenig, Carlos E. Lecture Notes for 2006 CNA Summer School: Probabilistic and Analytical Perspectives on Contemporary PDEs, Center for Nonlinear Analysis, Carnegie Mellon University

    [8] Lieberman, Gary M. Second order parabolic differential equations.World Scientific Publishing Co., Inc., River Edge, NJ, 1996. xii+439 pp. ISBN: 981-02-2883-X

    [9] Li, Tatsien; Qin, Tiehu Physics and Partial Differential Equations, Volume I, Translated by Yachun Li, Higher Education Press, People's Republic of China, SIAM, Philadelphia, Pennsylvania, 2012, x+264 pp. ISBN: 978-1-611972-26-9

    [10] Ladyzenskaja, O. A.; Ural'ceva, N. N. Linear and Quasilinear Elliptic Equations, Volume 46, Academic Press Inc., New York and London, 1968. vxiii+494 pp. ISBN-10: 0080955541, ISBN-13: 978-0080955544

    [11] Lin, Ching-Lung; Uhlmann, Gunther; Wang, Jenn-Nan, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain. Indiana Univ. Math. J. 60 (2011), no. 6, 2093-2106.

    [12] Mitrea, Marius; Monniaux, Sylvie, Maximal regularity for the Lamé system in certain classes of non-smooth domains. J. Evol. Equ. 10 (2010), no. 4, 811-833.

    無法下載圖示 校內:2019-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE