簡易檢索 / 詳目顯示

研究生: 王維國
Wang, Wei-Guo
論文名稱: 半平面壓電體表面環形電極之電彈場分析
The Electro-Elastic Analysis for a Half-Plane of Piezoelectric Ceramic with a Surface Annular Electrode
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: 軸對稱電彈場分析壓電陶瓷環形電極
外文關鍵詞: electroelastic analysis, annular electrode, piezoelectric ceramic, axisymmetric
相關次數: 點閱:119下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討半平面之壓電陶瓷,表面有極薄之實圓或環形電極,探討其電彈場之軸對稱問題。假設材料沿著對稱軸 軸的方向極化。根據線彈性壓電力學,利用漢可轉換將實圓與環形表面電極問題,分別化簡為對偶積分方程與三聯立積分方程。查表可得對偶積分方程之解,求得實圓電極之電彈場的閉合解。經複雜的數學推導,三聯立積分方程將化簡為一組無窮聯立代數方程,求得環形電極之部份電彈場的數值解。結果顯示實圓與環形電極之電彈場,慣例性地在電極尖端皆呈現r-0.5的奇異性。

    In this paper the axisymmetric problem of the electroelastic of piezoelectric ceramic in a half-plane with thin circular or ring surface electrode is formulated and analyzed. The material is polarized along z-axis, the axial direction. Based on the linear electroelastic theory, Hankel transform method is used to reduce the circular and ring surface electrode problems to dual integral equations and triple integral equations, respectively. The electroelastic field of the circular electrode problem is obtained in closed form by exactly solving the dual integral equations. However, due to the complicated mathematics, the triple integral equations will reduced to an infinite set of simultaneous equations. Part of the electroelastic field for the ring electrode problem can be obtained numerically. The results show that the electroelastic filed near the electrode tips has the conventional square root singularity for both electrode problems.

    摘要…………………………………………………………………………Ⅰ 英文摘要……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅲ 目錄…………………………………………………………………………Ⅳ 表目錄………………………………………………………………………Ⅵ 圖目錄………………………………………………………………………Ⅶ 符號說明……………………………………………………………………Ⅸ 第一章 緒論…………………………………………………………………..1 § 1.1 前言……………………………………………………………………..1 § 1.2 文獻回顧………………………………………………………………..3 § 1.3 研究目的與架構………………………………………………………..6 第二章 軸對稱表面電極之壓電體分析……………………………………..7 § 2.1 公式推導………………………………………………………………..7 § 2.2 問題描述………………………………………………………………16 § 2.3 三聯立積分方程………………………………………………………23 § 2.3.1 第二類弗雷德霍姆積分方程……………………………………….24 § 2.3.2 級數近似之數值方法……………………………………………….26 § 2.4 電彈場公式……………………………………………………………36 第三章 數值結果與討論……………………………………………………40 § 3.1 實圓電極之電彈場的閉合解…………………………………………40 § 3.2 環形電極之表面電彈場的數值解……………………………………50 § 3.3 環形電極中心電位與總電荷的變化…………………………………56 第四章 結論…………………………………………………………………59 參考文獻…………………………………………………………………….61 附錄A………………………………………………………………………..65 附錄B………………………………………………………………………..68 附錄C………………………………………………………………………..70 附錄D………………………………………………………………………..73 附錄E………………………………………………………………………..77

    [1]Kokunov, V.A., Kudryavtsev, B.A. and Senik, N.A., “The plane problem of electroelasticity for a piezoelectric layer with a periodic system of electrodes at the surfaces”. Journal of Applied Mathematics and Mechanics. Vol. 49, pp. 374-379, 1985.
    [2]Kokunov, V.A., Parton, V.Z. and Senik, N.A., “Axisymmetric problem of electroelasticity for a piezoelectric layer with annular electrodes”. Strength of Materials, Vol. 20, pp. 662-667, 1989.
    [3]Parton, V.Z. and Kudryavtsev, B.A., Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids. Gordon and Breach Science Publishers, New York, 1988.
    [4]Shindo, Y., Narita, F. and Sosa, H., “Electroelastic analysis of piezoelectric ceramics with surface electrodes”. International Journal of Engineering Science, Vol. 36, pp. 1001-1009, 1998.
    [5]Yoshida, M., Narita, F. and Shindo, Y., “Electroelastic field concentration by circular electrodes in piezoelectric ceramics”. Smart Materials and Structures, Vol. 12, pp. 972-978, 2003.
    [6]Kuang, Z.B., Zhou, Z.D. and Zhou, K.L., “Electroelastic analysis of a piezoelectric half-plane with finite surface electrodes”. International Journal of Engineering Science, Vol. 42, pp. 1603-1619, 2004.
    [7]Cooke, J.C., “Triple integral equations”. Quarterly Journal of Mechanics and Applied mathematics, Vol. 16, pp. 193-203, 1963.
    [8]Smythe, W.R., “The capacitance of a circular annulus”. Journal of Applied physics, Vol. 22, pp. 1499-1501, 1951.
    [9]Williams, W.E., “Integral equations formulation of some three part boundary value problems”. Proceedings of Edinburgh Mathematical Society, Vol. 13, pp. 317-323, 1963.
    [10]Spence, D. A., “A Wiener-Hopf solution to the triple integral equations for the electrified disc in a coplanar gap”. Proceedings of the Cambridge Philological Society. Vol. 68, pp. 529-545, 1970.
    [11]Collins, W.D., “On the solution of some axisymmetric boundary value problems by means of integral equations”. Proceedings of Edinburgh Mathematical Society, Vol. 13, pp. 235-246, 1963.
    [12]Gubenko, V.S. and Mossakovskii, V.I., “Pressure of an axially symmetric circular die on an elastic half-space”. Journal of Applied Mathematics and Mechanics, Vol. 24, pp. 477-486, 1960.
    [13]Shibuya, T., Koizumi, T. and Nakahara, I., “An elastic contact problem for a half-space indented by a flat annular rigid stamp”. International Journal of Engineering Science, Vol. 12, pp. 759-771, 1974.
    [14]Tranter, C.J., “The opening of a pair of coplanar Griffith cracks under internal pressure”. Quarterly Journal of Mechanics and Applied Mathematics, Vol. 14, pp. 283-292, 1961.
    [15]Selvadurai, A.P.S. and Singh, B.M., “The annular crack problem for an isotropic elastic solid”. Quarterly Journal of Mechanics and Applied Mathematics, Vol. 38, pp. 233-243, 1985.
    [16]Selvadurai, A.P.S., “On the axisymmetric loading of an annular crack by a disk inclusion”. Journal of Engineering Mathematics. Vol. 46, pp. 377-393, 2003.
    [17]Sneddon, I.N., Mixed Boundary Value Problems in Potential Theory. North-Holland, Amsterdam, 1966.
    [18]Nobel, B., “The solution of Bessel function dual integral equations by a multiplying-factor method”. Proceedings of the Cambridge Philological Society, Vol. 59, pp. 351-362, 1963.
    [19]Jain, D.L. and Kanwal, R.P., “An integral equation method for solving mixed boundary value problems”. SIAM Journal on Applied Mathematics, Vol. 20, pp. 642-658, 1971.
    [20]Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, The Netherlands, 1963.
    [21]Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series, and Products. Academic Press, San Diego, 2000.
    [22]Boresi, A.P. and Chong, K.P., Elasticity in Engineering Mechanics. Wiley, New York, 2000.
    [23]Ikeda, T., Fundamentals of Piezoelectricity. Oxford University Press, New York, 1990.
    [24]Sneddon, I.N., The Use of Integral Transforms. McGraw-Hill, New York, 1972.
    [25]Prudnikov, A.P., Brychkov, Yu. A. and Marichev O.I., Integrals and Series. Volume 2: Special Functions. Gordon and Breach Science Publisher, New York, 1986.
    [26]Gerald, C.F. and Wheatley P.O., Applied Numerical Analysis. Addison-Wesley, Massachusetts, 1999.
    [27]Watson, G.N., A Treatise on the Theory of Bessel Functions. Cambridge University Press, New York, 1995.
    [28]Mandal, B.N. and Mandal Nanigopal, Advances in Dual Integral Equations. Chapman and Hall, Boca Raton, Fla., 1972.

    下載圖示 校內:立即公開
    校外:2006-06-26公開
    QR CODE